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Abstract : Given an undirected graph, finding a minimum 2-edge connected spanning sub-
graph is NP-hard. We solve the problem for silicate network, brother cell and sierpinski gasket

rhombus.
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1 Introduction

The study of connectivity in graph theory has important applications in the areas of

network reliability and network design. In fact, with the introduction of fiber optic technology
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in telecommunication, designing a minimum cost survivable network has become a major ob-
jective in telecommunication industry. Survivable networks have to satisfy some connectivity
requirements, this means that they are still functional after the failure of certain links [5]. As
pointed out in [5, @], the topology that seems to be very efficient is the network that survives
after the loss of k — 1 or less edges, for some k > 2, where k depends on the level of reliability
required in the network [9]. In this paper, we concentrate on the minimum 2-edge connected
spanning subgraph. A connected graph G = (V, E) is said to be 2-edge connected if |[V| > 2
and the deletion of any set of < 2 edges leaves a connected graph. The minimum 2-edge con-
nected spanning subgraph (2-ECSS) problem is defined as follows: Given a 2-edge connected
graph G, find efficiently a spanning subgraph S(G) which is also 2-edge connected and has a
minimum number of edges. We denote the number of edges in a graph G by €(G) and the edges

of minimum 2-edge connected spanning subgraph of G by £(S(G)).

Kuller and Raghavachari [12] presented the first algorithm which, for all k, achieves
a performance ratio smaller than a constant which is less than two. They proved an upper
bound of 1.85 for the performance ratio of their algorithm. Cristina G. Fernandes [7] improved
their analysis, proving that the performance ratio of algorithm [I3] is smaller than 1.7 for
large enough k, and that it is at most 1.75 for all k. Cherian et.al [6] gave an approximation
algorithm for minimum size 2-ECSS problem where an ear decomposition is used to construct
a feasible 2-ECSS. The depth-first search algorithm was used to present a 3/2 approximation
algorithm for the minimum size 2-ECSS problem in which a notion called tree carving is used
[13]. An approximation for finding a smallest 2-edge connected subgraph containing a specified
spanning tree was studied by Hiroshi Nagamochi [§]. The sufficient conditions for a graph to
be perfectly 2-edge connected was given by Ali Ridha Mahjoub [2]. Woonghee [15] devised
an algorithm for r-regular, r-edge connected graphs. For cubic graphs, results of [11] imply a
new upper bound on the integrality gap of the linear programming formulation for the 2-edge
connectivity problem. Even though there are numerous results and discussions on minimum 2-
edge connected spanning subgraph problem, most of them deal only with approximation results.
According to the literature survey, the minimum 2-edge connected spanning subgraph problem
is not solved for an interconnection network. In this paper we derive an exact number of edges
of minimum 2-edge connected spanning subgraph of silicate network, brother cell and sierpinski

gasket thombus.
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2 Silicate Network

Lemma 2.1. [1] If one end of every edge of a graph G is of degree 2 then no proper spanning
subgraph of G is 2-edge comnected.

Consider a honeycomb network HC(r) of dimension r. Place silicon ions on all the vertices
of HC(r). Subdivide each edge of HC(r) once. Place oxygen ions on the new vertices. Introduce
6r new pendant edges one each at the 2-degree silicon ions of HC(r) and place oxygen ions at
the pendent vertices. See Figure 1(a). With every silicon ion associate the three adjacent oxygen
ions and form a tetrahedron as in Figure 1(b). The resulting network is a silicate network of
dimension r, denoted SL(r). The diameter of SL(r) is 4r. The graph in Figure 1(b) is a silicate
network of dimension two. The 3-degree oxygen nodes of silicates are called boundary nodes.

In Figure 1(b), ¢1, ¢, - - -, c12 are boundary nodes SLs.

1(a) 1{b)

Figure 1: Silicate Network SL(2)

When we delete all the silicon nodes from a silicate network we obtain a new network which we
shall call as an Oxide Network [14]. See Figure 2(a). An r-dimensional oxide network is denoted
by OX(r). By [14], there are r edge disjoint symmetric cycles in OX (r) which are also vertex
disjoint cycles. Let them be z1, z2, ..., ;. See Figure 2(b). The number of edges in z;,1 <i <7

is 18t — 6.
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Figure 2: Oxide Network OX(2)

Theorem 2.2. Let OX(r),r > 2 be an r-dimensional oxide network.Then £(S(OX(r))) =
e(x1)+e(we) =14 +e(x,)—142(r—1).

Proof. Let us prove the theorem by induction on r. When r = 2, there are r=2 edge disjoint
cycles z1 and z3 in OX(2). keeping x; and z2, removing all the edges, we get a disconnected

oxide network with 2-edge disjoint cycles z1 and 3 in OX(2). See Figure 3(a).
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Figure 3: ¢(S(OX(r =2))) =12 + 29 + 2 = 43.

Adding 2 edges from a boundary vertex of z; to two non boundary adjacent vertices of xo
and deleting the edge between those non boundary vertices of xs [edge to be removed is shown
in dashed line|, we get a minimum 2-edge connected spanning subgraph. See Figure 3(b).
This is minimum because by Lemma 2.1, deleting any single edge gives no 2-edge connected
spanning subgraph. The number of edges in z7 and x9 are 18(1) — 6 and 18(2) — 6. Hence
e(S(OX(r=2))) =12+ 29 + 2 = e(x1) + e(x2) — 1+ 2(r — 1). Thus the result is true for r =
2.



Minimum 2-Edge Connected Spanning Subgraph of Certain Interconnection Networks 41

Figure 4: ¢(S(OX(r =3))) = 12 + 29 + 47 + 4 = 92.

We assume that the result is true for » = k. When r = k + 1, there are r = k + 1 edge disjoint
cycles x1, 2, - - -, Tpr1. Adding 2 edges from a boundary vertex of z;, 1 < ¢ < k to two

non boundary adjacent vertices of x;11, 1 < ¢ < k and deleting the edges between those non

boundary vertices of x9, 3, - - -, 11, we get a minimum 2-edge connected spanning subgraph.
Hence e(S(OX(r=k+1))) =18(1)-6 — 1 + 18(2)—6 — 1 + --- + 18((k+1)) — 6 — 1 + 2k
=¢e(x1) +e(we) =14+ +e(rpyr) —1+2((E+1) —1). O

3 Sierpinski Gasket Rhombus

Definition 3.1. [} A sierpiniski Gasket Rhombus of level r [denoted by SR,] is obtained by
identifying the edges in two Sierpinski Gasket S, along one of their side. For the definition of
sierpinski Gasket, refer[10)].

5(a)

5(b)

Figure 5:(a) Sy and SR and (b) S3 and SR3

The sierpiniski Gasket graphs S, has 3" edges [14]. From the Definition 3.1, sierpiriski Gasket
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Rhombus SR, consists two copies of sierpiniski Gasket graph S, and identifying the edges of two
sierpiniski Gasket graphs S, along one of their side, 2"~! edges are shared by both S,. Therefore
the number of edges in SR, is 2x3" — 271,

Theorem 3.2. [1] Let Sy, > 3 be the r dimensional Sierpiriski gasket graph. Then €(S(S;)) =

/N AN

o(a)

2 x 371,

6(b)

Figure 6: (a) €(5(S2)) =6 and (b) (S5(S3)) = 18.

Theorem 3.3. Let SR, r > 2 be the r dimensional sierpiriski Gasket Rhombus. Thene(S(SR,)) =
2(2 x 3=ty —2r-1,

Proof. We prove this theorem by induction on r. When r = 2, SRy contains 2 copies of Ss and
has 2 x 32 — 2271 edges. Now we construct minimum 2-edge connected spanning subgraph of

SRy using 2 copies of minimum 2-edge connected spanning subgraph of Ss. See Figure 7(a).

7(a) 7(b)
Figure 7:(a) e(S(SR2) = 10 and (b) e(S(SR3) = 32

By Lemma 2.1, no edge can be deleted from Figure 7(b). Thus S(SRz) = 2¢(S(S2)). Since 2271
edges are shared by both Ss, e(S(SR2) = 26(S5(S2)) — 2271 = 2(2 x 3271) — 22-1

We assume that the result is true for r = k (i.e.) e(S(SRy)) = 2e(S(Sk)) — 21 = 2(2 x
3k_1) — 21 Consider r = k + 1. SRy1 contains two copies of Si. Construct a minimum

2-edge connected spanning subgraph of SRy using two copies of minimum 2-edge connected
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spanning subgraph of Sy where 2t1)=1 edges are shared by two Si. Thus £(S(Skt1)) =
26(S(Sk+1)) — 20H+D-1 = 2(2 x 3(k+1-1) _ g(k+1)—1, -

4 Brother Cell

Definition 4.1. [T} Assume that k is an integer with k > 2. The kth brother cell BC(k) is the
five tuple (G, wg, T, Yk, 2k), where Gy, = (V, E) is a bipartite graph with bipartition W (white)
and B(black) and contains four distinct nodes wy, g, yx and zi. wy is the white terminal; xy,
the white root; yi the black terminal and zj the black root. We can recursively define BC(k) as
follows:

(1) BC(2) is the 5-tuple (G2, w2, T2, Y2, z2) where V(Ga) = wa, x2, Y2, 22, S, t, and

E(Ga = (w2, 5), (5,22), (22,92), (Y2, 1), (t, 22), (w2, 22) (s, 1).

(2)The kth brother cell BC(k) with k > 3 is composed of two disjoint copies of (k —1)th brother
cells

BCY(k — 1) = (G4_1, Wi_1> Th_1s Yo1> Zo1)»

BC*(k—1) = (GIQq—DwI%—l’x%—l’yl%—lvzlz—l)f

a white root xy, and a black root zi,. To be specific,

V(Gy) = V(G}_y) UV(G}_y) U {g, 2k},

E(Gy) = B(Gy_,) U B(G{_,)U

{(zk, 2g,_1)s (2, @5 _1)s (@, 252)s (@, 22, (W1, W)}

_ 1 _ .2
2 = Wy_q, and Yr = Yi_-

8(a) 8(b)

Figure 8: (a) BC(2) and (b) BC(3)

From the definition, we construct BC(k) from two disjoint copies of (k — 1) and each time
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we add five more edges (zk,2}_;), (25, T2_1), (Tks 23 1) (T, 22 _1)s (Yh_1,wi_1). And each time
constructing a BC(k), deleting the edge (yi ,,w? ;) does not affect 2-edge connectivity of
BC(k).

Theorem 4.2. Let BC(r), r > 2 be a brother cell. Then ¢(S(BC(r))) =5 x 2kt —4

Proof. By the Definition 4.1, BC5 has 7 edges. Now label the vertices of BC(2) as shown in
the Figure 9(a). Deleting the edge(s,t), we get a cycle on 6 vertices which is a minimum 2-edge

connected spanning subgraph and ¢(S(BC(2))) =7—-1=5x 2271 — 4 =6.

X

<3

9(a) 9(b)

Figure 9: (a)e(S(BC(2))) = 6 and (b)e(S(BC(3))) = 16

We prove this theorem by induction on . When r = 3, BC(3) contains 2 disjoint copies of BC(2)

and five edges (z3,73), (23,73), (3, 23), (73, 23), (y3, w3) connecting theses two BC(2). Now we
construct minimum 2-edge connected spanning subgraph of BC'(3) using 2 disjoint copies of mini-

mum 2-edge connected spanning subgraph of BCy and with four edges (z3, 23), (23, 23), (23, 23), (23, 23).
See Figure 10(b). By Lemma 2.1, this is the minimum. Hence ¢(S(BC(3))) = 2¢(S(BC(2))) +

4=2x(5x221 —4)4+4=16=5x23"1 -4,

Figure 10: ¢(S(BC4)) = 36
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We assume that the result is true for r = k (i.e.) (S(BC(k))) = 2e(S(BC(k—1)))+4 =2x(5bx
2F=1 _4)4-4. Consider r = k+1. BC(k+1) contains two copies of BC(k). Construct minimum
2-edge connected spanning subgraph of BC'(k + 1) using 2 copies of minimum 2-edge connected
spanning subgraph of BC(k) and with four edges (zx, 2} ), (2K 25 _1), (T, 24 1), (ks 22 1)-

Thus e(S(BC(k +1))) =2e(S(BC (k) +4=2x (5 x 2F"1 —4) 4 4 =5 x 2(k+D-1 _ ¢4, O
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