Minimum 2-Edge Connected Spanning Subgraph of Certain Interconnection Networks

Albert William ${ }^{\dagger}$, Indra Rajasingh ${ }^{\ddagger}$ and S. Roy ${ }^{\dagger 1}$
${ }^{\dagger}$ Department of Mathematics, Loyola College, Chennai, India.
albertwilliam80@hotmail.com
${ }^{\ddagger}$ School of Advanced Sciences, VIT University, Chennai, India.
indrarajasingh@yahoo.com

Abstract

Given an undirected graph, finding a minimum 2-edge connected spanning subgraph is NP-hard. We solve the problem for silicate network, brother cell and sierpiński gasket rhombus.

Keywords : silicate network; brother cell; sierpiński gasket rhombus.

1 Introduction

The study of connectivity in graph theory has important applications in the areas of network reliability and network design. In fact, with the introduction of fiber optic technology

[^0]in telecommunication, designing a minimum cost survivable network has become a major objective in telecommunication industry. Survivable networks have to satisfy some connectivity requirements, this means that they are still functional after the failure of certain links [5]. As pointed out in [5, 9, the topology that seems to be very efficient is the network that survives after the loss of $k-1$ or less edges, for some $k \geq 2$, where k depends on the level of reliability required in the network [9. In this paper, we concentrate on the minimum 2-edge connected spanning subgraph. A connected graph $G=(V, E)$ is said to be 2-edge connected if $|V| \geq 2$ and the deletion of any set of <2 edges leaves a connected graph. The minimum 2-edge connected spanning subgraph (2-ECSS) problem is defined as follows: Given a 2-edge connected graph G, find efficiently a spanning subgraph $S(G)$ which is also 2-edge connected and has a minimum number of edges. We denote the number of edges in a graph G by $\varepsilon(G)$ and the edges of minimum 2-edge connected spanning subgraph of G by $\varepsilon(S(G))$.

Kuller and Raghavachari [12] presented the first algorithm which, for all k, achieves a performance ratio smaller than a constant which is less than two. They proved an upper bound of 1.85 for the performance ratio of their algorithm. Cristina G. Fernandes [7] improved their analysis, proving that the performance ratio of algorithm [13] is smaller than 1.7 for large enough k, and that it is at most 1.75 for all k. Cherian et.al [6] gave an approximation algorithm for minimum size 2-ECSS problem where an ear decomposition is used to construct a feasible 2-ECSS. The depth-first search algorithm was used to present a $3 / 2$ approximation algorithm for the minimum size 2-ECSS problem in which a notion called tree carving is used [13]. An approximation for finding a smallest 2-edge connected subgraph containing a specified spanning tree was studied by Hiroshi Nagamochi [8]. The sufficient conditions for a graph to be perfectly 2-edge connected was given by Ali Ridha Mahjoub [2]. Woonghee [15] devised an algorithm for r-regular, r-edge connected graphs. For cubic graphs, results of [11] imply a new upper bound on the integrality gap of the linear programming formulation for the 2-edge connectivity problem. Even though there are numerous results and discussions on minimum 2edge connected spanning subgraph problem, most of them deal only with approximation results. According to the literature survey, the minimum 2-edge connected spanning subgraph problem is not solved for an interconnection network. In this paper we derive an exact number of edges of minimum 2-edge connected spanning subgraph of silicate network, brother cell and sierpiński gasket rhombus.

2 Silicate Network

Lemma 2.1. [1] If one end of every edge of a graph G is of degree 2 then no proper spanning subgraph of G is 2-edge connected.

Consider a honeycomb network $H C(r)$ of dimension r. Place silicon ions on all the vertices of $H C(r)$. Subdivide each edge of $H C(r)$ once. Place oxygen ions on the new vertices. Introduce $6 r$ new pendant edges one each at the 2-degree silicon ions of $H C(r)$ and place oxygen ions at the pendent vertices. See Figure 1(a). With every silicon ion associate the three adjacent oxygen ions and form a tetrahedron as in Figure 1(b). The resulting network is a silicate network of dimension r, denoted $S L(r)$. The diameter of $S L(r)$ is $4 r$. The graph in Figure 1(b) is a silicate network of dimension two. The 3-degree oxygen nodes of silicates are called boundary nodes. In Figure $1(\mathrm{~b}), c_{1}, c_{2}, \cdots, c_{12}$ are boundary nodes $S L_{2}$.

1(a)

1(b)

Figure 1: Silicate Network $S L(2)$

When we delete all the silicon nodes from a silicate network we obtain a new network which we shall call as an Oxide Network [14]. See Figure 2(a). An r-dimensional oxide network is denoted by $O X(r)$. By [14], there are r edge disjoint symmetric cycles in $O X(r)$ which are also vertex disjoint cycles. Let them be $x_{1}, x_{2}, \ldots, x_{r}$. See Figure 2(b). The number of edges in $x_{i}, 1 \leq i \leq r$ is $18 i-6$.

Figure 2: Oxide Network $O X(2)$

Theorem 2.2. Let $O X(r), r \geq 2$ be an r-dimensional oxide network.Then $\varepsilon(S(O X(r)))=$ $\varepsilon\left(x_{1}\right)+\varepsilon\left(x_{2}\right)-1+\cdots+\varepsilon\left(x_{r}\right)-1+2(r-1)$.

Proof. Let us prove the theorem by induction on r. When $r=2$, there are $r=2$ edge disjoint cycles x_{1} and x_{2} in $O X(2)$. keeping x_{1} and x_{2}, removing all the edges, we get a disconnected oxide network with 2-edge disjoint cycles x_{1} and x_{2} in $O X(2)$. See Figure 3(a).

3(a)

3(b)

Figure 3: $\varepsilon(S(O X(r=2)))=12+29+2=43$.
Adding 2 edges from a boundary vertex of x_{1} to two non boundary adjacent vertices of x_{2} and deleting the edge between those non boundary vertices of x_{2} [edge to be removed is shown in dashed line], we get a minimum 2-edge connected spanning subgraph. See Figure 3(b). This is minimum because by Lemma 2.1, deleting any single edge gives no 2-edge connected spanning subgraph. The number of edges in x_{1} and x_{2} are 18(1) - 6 and 18(2) - 6. Hence $\varepsilon(S(O X(r=2)))=12+29+2=\varepsilon\left(x_{1}\right)+\varepsilon\left(x_{2}\right)-1+2(r-1)$. Thus the result is true for $r=$ 2.

Figure 4: $\varepsilon(S(O X(r=3)))=12+29+47+4=92$.
We assume that the result is true for $r=k$. When $r=k+1$, there are $r=k+1$ edge disjoint cycles $x_{1}, x_{2}, \cdots, x_{k+1}$. Adding 2 edges from a boundary vertex of $x_{i}, 1 \leq i \leq k$ to two non boundary adjacent vertices of $x_{i+1}, 1 \leq i \leq k$ and deleting the edges between those non boundary vertices of $x_{2}, x_{3}, \cdots, x_{k+1}$, we get a minimum 2-edge connected spanning subgraph. Hence $\varepsilon(S(O X(r=k+1)))=18(1)-6-1+18(2)-6-1+\cdots+18((k+1))-6-1+2 k$ $=\varepsilon\left(x_{1}\right)+\varepsilon\left(x_{2}\right)-1+\cdots+\varepsilon\left(x_{k+1}\right)-1+2((k+1)-1)$.

3 Sierpinski Gasket Rhombus

Definition 3.1. 4] A sierpinski Gasket Rhombus of level r [denoted by $S R_{r}$] is obtained by identifying the edges in two Sierpinski Gasket S_{r} along one of their side. For the definition of sierpiński Gasket, refer[10].

5(a)

Figure 5:(a) S_{2} and $S R_{2}$ and (b) S_{3} and $S R_{3}$

The sierpiński Gasket graphs S_{r} has 3^{r} edges [14]. From the Definition 3.1, sierpiński Gasket

Rhombus $S R_{r}$ consists two copies of sierpiński Gasket graph S_{r} and identifying the edges of two sierpiński Gasket graphs S_{r} along one of their side, 2^{r-1} edges are shared by both S_{r}. Therefore the number of edges in $S R_{r}$ is $2 \times 3^{r}-2^{r-1}$.

Theorem 3.2. [1] Let $S_{r}, r \geq 3$ be the r dimensional Sierpiński gasket graph. Then $\varepsilon\left(S\left(S_{r}\right)\right)=$ $2 \times 3^{r-1}$.

Figure 6: (a) $\varepsilon\left(S\left(S_{2}\right)\right)=6$ and (b) $\varepsilon\left(S\left(S_{3}\right)\right)=18$.

Theorem 3.3. Let $S R_{r}, r \geq 2$ be the r dimensional sierpiński Gasket Rhombus. Then $\varepsilon\left(S\left(S R_{r}\right)\right)=$ $2\left(2 \times 3^{r-1}\right)-2^{r-1}$.

Proof. We prove this theorem by induction on r. When $r=2, S R_{2}$ contains 2 copies of S_{2} and has $2 \times 3^{2}-2^{2-1}$ edges. Now we construct minimum 2-edge connected spanning subgraph of $S R_{2}$ using 2 copies of minimum 2-edge connected spanning subgraph of S_{2}. See Figure 7(a).

Figure 7:(a) $\varepsilon\left(S\left(S R_{2}\right)=10\right.$ and (b) $\varepsilon\left(S\left(S R_{3}\right)=32\right.$
By Lemma 2.1, no edge can be deleted from Figure 7(b). Thus $S\left(S R_{2}\right)=2 \varepsilon\left(S\left(S_{2}\right)\right)$. Since 2^{2-1} edges are shared by both $S_{2}, \varepsilon\left(S\left(S R_{2}\right)=2 \varepsilon\left(S\left(S_{2}\right)\right)-2^{2-1}=2\left(2 \times 3^{2-1}\right)-2^{2-1}\right.$ We assume that the result is true for $r=k$ (i.e.) $\varepsilon\left(S\left(S R_{k}\right)\right)=2 \varepsilon\left(S\left(S_{k}\right)\right)-2^{k-1}=2(2 \times$ $\left.3^{k-1}\right)-2^{r-1}$. Consider $r=k+1 . S R_{k+1}$ contains two copies of S_{k}. Construct a minimum 2-edge connected spanning subgraph of $S R_{k+1}$ using two copies of minimum 2-edge connected
spanning subgraph of S_{k+1} where $2^{(k+1)-1}$ edges are shared by two S_{k}. Thus $\varepsilon\left(S\left(S_{k+1}\right)\right)=$ $2 \varepsilon\left(S\left(S_{k+1}\right)\right)-2^{(k+1)-1}=2\left(2 \times 3^{(k+1)-1}\right)-2^{(k+1)-1}$.

4 Brother Cell

Definition 4.1. 14] Assume that k is an integer with $k \geq 2$. The k th brother cell $B C(k)$ is the five tuple $\left(G_{k}, w_{k}, x_{k}, y_{k}, z_{k}\right)$, where $G_{k}=(V, E)$ is a bipartite graph with bipartition W (white) and $B($ black $)$ and contains four distinct nodes w_{k}, x_{k}, y_{k} and $z_{k} . w_{k}$ is the white terminal; x_{k} the white root; y_{k} the black terminal and z_{k} the black root. We can recursively define $B C(k)$ as follows:
(1) $B C(2)$ is the 5-tuple $\left(G_{2}, w_{2}, x_{2}, y_{2}, z_{2}\right)$ where $V\left(G_{2}\right)=w_{2}, x_{2}, y_{2}, z_{2}, s$, t, and
$E\left(G_{2}=\left(w_{2}, s\right),\left(s, x_{2}\right),\left(x_{2}, y_{2}\right),\left(y_{2}, t\right),\left(t, z_{2}\right),\left(w_{2}, z_{2}\right)(s, t)\right.$.
(2) The k th brother cell $B C(k)$ with $k \geq 3$ is composed of two disjoint copies of $(k-1)$ th brother cells
$B C^{1}(k-1)=\left(G_{k-1}^{1}, w_{k-1}^{1}, x_{k-1}^{1}, y_{k-1}^{1}, z_{k-1}^{1}\right)$,
$B C^{2}(k-1)=\left(G_{k-1}^{2}, w_{k-1}^{2}, x_{k-1}^{2}, y_{k-1}^{2}, z_{k-1}^{2}\right)$,
a white root x_{k}, and a black root z_{k}. To be specific,
$V\left(G_{k}\right)=V\left(G_{k-1}^{1}\right) \cup V\left(G_{k-1}^{2}\right) \cup\left\{x_{k}, z_{k}\right\}$,
$E\left(G_{k}\right)=E\left(G_{k-1}^{1}\right) \cup E\left(G_{k-1}^{2}\right) \cup$
$\left\{\left(z_{k}, x_{k-1}^{1}\right),\left(z_{k}, x_{k-1}^{2}\right),\left(x_{k}, z_{k-1}^{1}\right),\left(x_{k}, z_{k-1}^{2}\right),\left(y_{k-1}^{1}, w_{k-1}^{2}\right)\right\}$,
$z_{k}=w_{k-1}^{1}$, and $y_{k}=y_{k-1}^{2}$.

Figure 8: (a) $B C(2)$ and (b) $B C(3)$

From the definition, we construct $B C(k)$ from two disjoint copies of $(k-1)$ and each time we add five more edges $\left(z_{k}, x_{k-1}^{1}\right),\left(z_{k}, x_{k-1}^{2}\right),\left(x_{k}, z_{k-1}^{1}\right),\left(x_{k}, z_{k-1}^{2}\right),\left(y_{k-1}^{1}, w_{k-1}^{2}\right)$. And each time constructing a $B C(k)$, deleting the edge $\left(y_{k-1}^{1}, w_{k-1}^{2}\right)$ does not affect 2-edge connectivity of $B C(k)$.

Theorem 4.2. Let $B C(r), r \geq 2$ be a brother cell. Then $\varepsilon(S(B C(r)))=5 \times 2^{k-1}-4$

Proof. By the Definition 4.1, $B C_{2}$ has 7 edges. Now label the vertices of $B C(2)$ as shown in the Figure $9(\mathrm{a})$. Deleting the edge (s, t), we get a cycle on 6 vertices which is a minimum 2-edge connected spanning subgraph and $\varepsilon(S(B C(2)))=7-1=5 \times 2^{2-1}-4=6$.

9(a)

9(b)

Figure 9: $(\mathrm{a}) \varepsilon(S(B C(2)))=6$ and $(\mathrm{b}) \varepsilon(S(B C(3)))=16$

We prove this theorem by induction on r. When $r=3, B C(3)$ contains 2 disjoint copies of $B C(2)$ and five edges $\left(z_{3}, x_{2}^{1}\right),\left(z_{3}, x_{2}^{2}\right),\left(x_{3}, z_{2}^{1}\right),\left(x_{3}, z_{2}^{2}\right),\left(y_{2}^{1}, w_{2}^{2}\right)$ connecting theses two $B C(2)$. Now we construct minimum 2-edge connected spanning subgraph of $B C(3)$ using 2 disjoint copies of minimum 2-edge connected spanning subgraph of $B C_{2}$ and with four edges $\left(z_{3}, x_{2}^{1}\right),\left(z_{3}, x_{2}^{2}\right),\left(x_{3}, z_{2}^{1}\right),\left(x_{3}, z_{2}^{2}\right)$. See Figure $10(\mathrm{~b})$. By Lemma 2.1, this is the minimum. Hence $\varepsilon(S(B C(3)))=2 \varepsilon(S(B C(2)))+$ $4=2 \times\left(5 \times 2^{2-1}-4\right)+4=16=5 \times 2^{3-1}-4$.

Figure 10: $\varepsilon\left(S\left(B C_{4}\right)\right)=36$

We assume that the result is true for $r=k$ (i.e.) $\varepsilon(S(B C(k)))=2 \varepsilon(S(B C(k-1)))+4=2 \times(5 \times$ $\left.2^{k-1}-4\right)+4$. Consider $r=k+1 . B C(k+1)$ contains two copies of $B C(k)$. Construct minimum 2-edge connected spanning subgraph of $B C(k+1)$ using 2 copies of minimum 2-edge connected spanning subgraph of $B C(k)$ and with four edges $\left(z_{k}, x_{k-1}^{1}\right),\left(z_{k}, x_{k-1}^{2}\right),\left(x_{k}, z_{k-1}^{1}\right),\left(x_{k}, z_{k-1}^{2}\right)$. Thus $\varepsilon(S(B C(k+1)))=2 \varepsilon(S(B C(k)))+4=2 \times\left(5 \times 2^{k-1}-4\right)+4=5 \times 2^{(k+1)-1}-4$.

Acknowledgements

This work is supported by Maulana Azad National Fellowship F1-17.1/2011/MANF-CHR-TAM2135 of the University Grants Commission, New Delhi, India.

References

[1] Albert William and S. Roy, Minimum 2-edge connected spanning subgraph of certain graphs, Accepted for publication in the Journal of Combinatorial Mathematics and Combinatorial Computing.
[2] Ali Ridha Mahjoub, On Perfectly two-edge connected graphs, Discrete Mathematics 170(1997), 153-172.
[3] P. Antony Kishore, Topolological properties of silicate and shuffle exxhange networks and graph drawing with matlab, Ph.D Thesis, University of Madras, India(2012).
[4] D. Antony Xavier, M. Rosary and A. Andrew Identification of triangular graphs, Proceedings of the international conference on mathematical engineering, 2(2013), 773-778.
[5] M. D. Biha and A.R. Mahjoub, The k-edge connected subgraph problem I: Polytopes and critical extreme points, Linear Algebra and its Applications, 381(2004), 117-139.
[6] J. Cherian, A. Sebo and Z. Szigeti, An improved approximation algorithm for minimum size 2-edge connected spanning subgraphs, Integer Programming and Combinatorial OptimizationLecture Notes in Computer Science, 1412(1998), 126-136.
[7] C.G.Fernandes, A better approximation ratio for the minimum size k-edge-connected spanning subgraph problem, Journal of Algorithms, 28(1998), 105-124.

Int. J. Math. And Its App. Vol. 2 No. 2 (2014)/ Albert William, Indra Rajasingh and S.Roy
[8] Hiroshi Nagamochi, An approximation for finding a smallest 2-edge-connected subgraph containing a specified spanning tree, Discrete Applied Mathematics, 126(2003), 83-113.
[9] C.W. Ko and C.L. Monma, Heuristic methods for designing highly survivable communication networks," Technical Report, Bell Communication Research, 1989.
[10] S. Klavzar, Coloring sierpiński graphs and Sierpiński gasket graphs, Taiwanese J. Math. $12(2008), 513-522$.
[11] P. Krysta and V.S. Anil Kumar, Approximation algorithms for minimum size 2-connectivity problems, Lecture Notes in Computer Science, 2010(2001), 431-442.
[12] S. Kuller and B. Raghavachari, Improved approximation algorithms for uniform connectivity problems, Journal of Algorithms 21(1996), 434-450.
[13] S. Kuller and U. Vishkin, Biconnectivity approximations and graph carvings, J. ACM $41(2)(1994), 214-235$.
[14] Shin-Shin Kao and Lih-Hsing Hsu Brother trees: A family of optimal 1_{p}-hamiltonian and 1-edge hamiltonian graphs, Information Proce. Letters 86(2003), 263-269.
[15] T.M. Woonghee, Finding 2-edge connected spanning subgrahs, Operation Research Letters, $32(2004)$, 212-216.

Int. J. Math. And Its App. Online @ http://ijmaa.in

[^0]: ${ }^{1}$ Corresponding author email:sroysantiago@gmail.com (S.Roy)
 AMS Subject Classification: 05C4O

