
IJ
M
AA

International Journal of Mathematics And Its Applications

Vol.2 No.1 (2014), pp.1-21.

ISSN: 2347-1557(online)

Some Constraction with Q- Function For Coupled

Coincidence Point Theorem in Partially

Ordered Quasi Metric Spaces

Animesh Gupta‡,1, P.S.Kaurav† and S.S.Rajput∗

‡Department of Mathematics, Vidhyapeeth Institute of Science & Technology, Bhopal, India.

dranimeshgupta10@gmail.com

†,∗Department of Mathematics, Govt. P.G. College, Gadarwara, Dist. Narsingpur, M.P., India.

rajputdrss4@gmail.com

Abstract : The purpose of this article is to prove coupled coincidence and coupled fixed point theorem for

non linear contractive mappings in partially ordered complete quasi - metric spaces using the concept of g

monotone mapping with a Q- function q. The presented theorems are generalizations of the recent coupled

fixed point theorems due to N. Hussain et al. [17], Bhaskar and Lakshmikantham [12], Lakshmikantham

and Ciric [20] and many others. We also give an example in support of our theorem for which result of

N. Hussain et al. [17].
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1 Introduction and Preliminaries

The Banach contractive mapping principle [11] is an important result of analysis and it has been applied

widely in a number of branches of mathematics. It has been noted that the Banach contraction prin-
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ciple [11] was defined on complete metric space. In the few years ago many researchers found that this

contraction mappings is also true in another spaces like Banach spaces, cone metric spaces, Fuzzy metric

spaces, G- metric spaces and so on. One of the most interesting spaces that is partially ordered metric

spaces was introduced by Matthews in 1994 as a part of denotional semantics of dataflow networks (see

[22, 23]). Partial ordered metric spaces play an important role in constructing models in the theory of

computation (see [26, 27, 28, 29, 30]) and applied to the periodic boundary value problem for different

equations, (see [24, 25, 15, 1, 14, 16, 10, 13, 18]) and the references cited therein. Recently, Bhaskar

and Lakshmikantham [12] presented some new results for contractions in partially ordered metric spaces.

Bhaskar and Lakshmikantham [12] noted that their theorem can be used to investigate a large class of

problems and discussed the existence and uniqueness of solution for a periodic boundary value problem.

Beside this, Al-Homidan et al [3] introduced the concept of a Q-function defined on a quasi-metric space

which generalizes the notions of a τ -function and a ω-distance and establishes the existence of the so-

lution of equilibrium problem (see also [[4, 5, 6, 7, 8]). The aim of this paper is to extend the results of

Lakshmikantham and Ciric [20] for a mixed monotone nonlinear contractive mapping in the setting of

partially ordered quasi-metric spaces with a Q-function q.We prove some coupled coincidence and coupled

common fixed point theorems for a pair of mappings. Our results extend the recent coupled fixed point

theorems due to Lakshmikantham and Ciric [20] and many others.

Recall that if (X,�) is a partially ordered set and F : X → X such that for each x, y ∈ X,x � y

implies F (x) � F (y), then a mapping F is said to be non decreasing. Similarly, a non increasing mapping

is defined. Bhaskar and Lakshmikantham [12] introduced the following notions of a mixed monotone

mapping and a coupled fixed point.

Definition 1.1. Let (X,�) is a partially ordered set and F : X → X. The mapping F is said to have

the mixed monotone property if F is nondecreasing monotone in first argument and is a nonincreasing

monotone in its second argument, that is, for any x, y ∈ X

x1, x2 ∈ X, x1 � x2 =⇒ F (x1, y) � F (x2, y)

y1, y2 ∈ X, y1 � y2 =⇒ F (x, y1) � F (x, y2)

Definition 1.2. Let (X,�) is a partially ordered set and F : X → X and g : X → X. The mapping F is

said to have the mixed g - monotone property if F is g - nondecreasing monotone in first argument and

is a g - nonincreasing monotone in its second argument, that is, for any x, y ∈ X

x1, x2 ∈ X, g(x1) � g(x2) =⇒ F (x1, y) � F (x2, y)

y1, y2 ∈ X, g(y1) � g(y2) =⇒ F (x, y1) � F (x, y2)

It is clear that Definition 1.2 reduced to 1.1 when g is the identity mapping.

Definition 1.3. An element (x, y) ∈ X ×X is called a coupled fixed point of a mapping F : X ×X → X

if

F (x, y) = x F (y, x) = y
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Definition 1.4. An element (x, y) ∈ X × X is called a coupled coincidence point of the mappings

F : X ×X → X and g : X → X if

F (x, y) = g(x) F (y, x) = g(y)

It is easy to see that coupled coincidence point can be reduced to coupled fixed point on taking g be

an identity mapping.

The main theoretical result of Lakshmikantham and Ciric [20] is the following coupled fixed point theorems

Theorem 1.5. Let (X,�) be a partially ordered set, and suppose, there is a metric d on X such that

(X,d) is a complete metric space. Assume there is a function ψ : [0,+∞) → [0,+∞) with ψ(t) < t and

limr→t+ψ(r) < t for each t > 0, and also suppose that F : X ×X and g : X → X such that F has the

mixed g- monotone property and

d(F (x, y), F (u, v)) � ψ

(
d(g(x), g(u)) + d(g(y), g(v))

2

)
(1.1)

for all x, y, u, v ∈ X for which g(x) � g(u) and g(y) � g(v). Suppose that F (X ×X) ⊆ g(X), and g is

continuous and commutes with F, and also suppose that either

(a) F is continuous or

(b) X has the following property:

(i) if a non decreasing sequence {xn} → x then xn � x for all n,

(ii) if a non increasing sequence {yn} → y then yn � y for all n.

If there exists x0, y0 ∈ X such that

g(x0) � F (x0, y0), g(y0) � F (y0, x0) (1.2)

then there exist x, y ∈ X such that

g(x) = F (x, y), g(y) = F (y, x) (1.3)

that is F and g have a coupled coincidence.

Definition 1.6. Let X be a nonempty set. A real valued function d : X ×X → R+ is said to be quasi

metric space on X if

(M1) d(x, y) � 0 for all x, y ∈ X,

(M2) d(x, y) = 0 if and only if x = y,

(M3) d(x, y) � d(x, z) + d(z, y) for all x, y, z ∈ X

The pair (X,d) is called a quasi- metric space.

Definition 1.7. Let (X,d) be a quasi metric space. A mapping q : X ×X → R+ is called a Q- function

on X if the following conditions are satisfied:
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(Q1) for all x, y, z ∈ X,

(Q2) if x ∈ X and (yn)n�1 is a sequence in X such that it converges to point y (with respect to quasi

metric) and q(x, yn) �M for some M = M(x), then q(x, y) �M ;

(Q3) for any ε > 0 there exists δ > 0 such that q(z, x) � δ and q(z, y) � δ implies that d(x, y) � ε.

Remark 1.8. If (X,d) is a metric space, and in addition to (Q1)− (Q3), the following condition are also

satisfied:

(Q4) for any sequence (xn)n�1 in X with limn→∞ sup{q(xn, xm) : m > n} = 0 and if there exist a

sequence (yn)n�1 in X such that limn→∞ q(xn, yn) = 0, then limn→∞ d(xn, yn) = 0

then a Q- function is called τ -function, introduced by Lin and Du [21]. It has been shown in [21] that

every ω- function, introduced and studied by Kada et al. [19], is a τ - function. In fact, if we consider

(X,d) as a metric space and replace (Q2) by the following condition:

(Q5) for any x ∈ X, the function p(x, .)→ R+ is lower semi continuous,

then a Q- function is called a ω- function on X. Several examples of ω- functions are given in [19]. It is

easy to see that if (q(x, .) is lower semi continuous, then (Q2) holds. Hence, it is obvious that every ω-

function is τ - function and every τ - function is Q- function, but the converse assertions do not hold.

Example 1.9. Let X = R. Define d : X ×X → R+ by

d(x, y) =

{
0, if x = y

| y | otherwise

and q : X ×X → R+ by

q(x, y) =| y |, ∀x, y ∈ X.

Then one can easily see that d is a quasi- metric space and q is a Q- function on X, but q is neither a τ -

function nor a ω- function.

Example 1.10. Define d : X ×X → R+ by

d(x, y) =

{
y − x, if x = y

2(x− y) otherwise

and q : X ×X → R+ by

q(x, y) =| x− y |, ∀x, y ∈ X.

Then one can easily see that d is a quasi- metric space and q is a Q− function on X, but q is neither a

τ - function nor a ω- function, because (X, d) is not a metric space.

The following lemma lists some properties of a Q− function on X which are similar to that of a ω-

function (see [19]).
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Lemma 1.11. Let q : X ×X → R+ be a Q - function on X. Let {xn}n∈N and {yn}n∈N be sequences in

X, and let {αn}n∈N and {βn}n∈N be such that they converges to 0 and x, y, z ∈ X. Then, the following

hold:

1. if q(xn, y) � αn and q(xn, z) � βn for all n ∈ N , then y = z. In particular, if q(x, y) = 0 and

q(x, z) = 0 then y = z;

2. if q(xn, yn) � αn and q(xn, z) � βn for all x ∈ N , then {yn}n∈N converges to z;

3. if q(xn, xm) � αn for all n,m ∈ N with m > n, then {xn}n∈N is a Cauchy sequence ;

4. if q(y, xn) � αn for all n ∈ N , then {xn}n∈N is a Cauchy sequence ;

5. if q1, q2, q3....qn are Q- functions on X, then q(x, y) = max{q1(x, y), q2(x, y), q3(x, y), . . . , qn(x, y)}
is also a Q− function on X.

2 Main Result

Analogous with Definition 1.1, Lakshmikantham and Circ [20] introduced the following concept of the

mixed g− monotone mapping.

Definition 2.1. Let (X,�) is a partially ordered set and F : X → X and g : X → X. The mapping F

is said to has the mixed g−monotone property if F is nondecreasing g− monotone in first argument and

is a nonincreasing g− monotone in its second argument, that is, for any x, y ∈ X

x1, x2 ∈ X, g(x1) � g(x2) =⇒ F (x1, y) � F (x2, y)

y1, y2 ∈ X, g(y1) � g(y2) =⇒ F (x, y1) � F (x, y2).

Note that if g is the identity mapping, then the Definition 2.1 reduces to Definition 1.1.

Definition 2.2. An element (x, y) ∈ X × X is called a coupled coincidence point of a mapping F :

X ×X → X and g : X → X if

F (x, y) = g(x), F (y, x) = g(y).

Definition 2.3. Let X be a non empty set and F : X ×X → X and g : X → X. one says F and g are

commutative if

g(F (x, y) = F (g(x), g(y))

for all x, y ∈ X.

The main result of N.Hussain et al. [17] is as follows;

Theorem 2.4. Let (X,�, d) be a partially ordered complete quasi metric space with a Q-function q on

X. Assume that the function ψ : [0,+∞)→ [0,+∞) is such that ψ(t) < t for each t > 0. Further suppose

that k ∈ (0, 1) and F : X ×X → X , g : X → X are such that F has the mixed g-monotone property and

q(F (x, y), F (u, v)) � kψ

(
q(g(x), g(u)) + q(g(y), g(v))

2

)
(2.1)
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for all x, y, u, v ∈ X for which g(x) � g(u) and g(y) � g(v). Suppose that F (X ×X) ⊆ g(X), and g is

continuous and commutes with F, and also suppose that either

(a) F is continuous or

(b) X has the following property:

(i) if a non decreasing sequence {xn} → x then xn � x for all n,

(ii) if a non increasing sequence {yn} → y then yn � y for all n.

If there exists x0, y0 ∈ X such that

g(x0) � F (x0, y0), g(y0) � F (y0, x0) (2.2)

then there exist x, y ∈ X such that

g(x) = F (x, y), g(y) = F (y, x) (2.3)

that is F and g have a coupled coincidence.

Following definition plays an important role to prove of our main result.

Definition 2.5. Let (X,�,d) be a partially ordered complete quasi metric space with a Q-function q on

X. Let F : X ×X → X and g : X → X be two mappings. We say F is a generalized g-Meir-Keeler type

contraction if, for all ε > 0, there exists δ(ε) > 0 such that, for all x, y, u, v ∈ X with g(x) � g(u) and

g(y) � g(v),

ε � 1

2
[q(g(x), g(u)) + q(g(y), g(v))] < ε+ δ(ε) =⇒ q(F (x, y), F (u, v)) < ε. (2.4)

Definition 2.6. Let Ψ denote all functions ψ : [0,∞)→ [0,∞) which satisfy the following

(i) ψ is continuous and non decreasing,

(ii) ψ(t) = 0 if and only if t = 0,

(iii) ψ(t) < t for each t > 0,

(iv) ψ(t1 + t2) � ψ(t1) + ψ(t2), ∀t1, t2 ∈ [0,∞).

Now we give the main result of this paper, which is as follows.

Theorem 2.7. Let (X,�, d) be a partially ordered complete quasi- metric space with a Q- function q

on X. Suppose that F : X ×X → X; g : X → X are such that F has the mixed g-monotone property.

Assume that ψ ∈ Ψ such that

q(F (x, y), F (u, v)) � ψ (rq(g(x), g(u)) + sq(g(y), g(v))) (2.5)

for all x, y, u, v ∈ X and r, s ∈ (0, 1), 0 < r + s < 1 for which g(x) � g(u) and g(y) � g(v). Suppose

that F (X ×X) ⊆ g(X), and g is continuous and commutes with F, and also suppose that either
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(a) F is continuous or

(b) X has the following property:

(i) if a non decreasing sequence {xn} → x then xn � x for all n,

(ii) if a non increasing sequence {yn} → y then yn � y for all n.

If there exists x0, y0 ∈ X such that

g(x0) � F (x0, y0), g(y0) � F (y0, x0) (2.6)

then there exist x, y ∈ X such that

g(x) = F (x, y), g(y) = F (y, x) (2.7)

that is F and g have a coupled coincidence.

Proof. Choose x0, y0 ∈ X to be such that g(x0) � F (x0, y0) and g(y0)

� F (y0, x0). Since F (X × X) ⊆ g(X), we can choose x1, y1 ∈ X such that g(x1) = F (x0, y0) and

g(y1) = F (y0, x0). Again F (X ×X) ⊆ g(X), we can choose x2, y2 ∈ X such that g(x2) = F (x1, y1) and

g(y2) = F (y1, x1). Continuing this process, we can construct sequences {xn} and {yn} in X such that

g(xn+1) = F (xn, yn), g(yn+1) = F (yn, xn), ∀n (2.8)

� 0 (2.9)

We will show that

g(xn) � g(xn+1), ∀n � 0, (2.10)

g(yn) (2.11)

� g(yn+1), ∀n � 0. (2.12)

We will use the mathematical induction. Let n = 0. Since g(x0) � F (x0, y0) and g(y0)

� F (y0, x0) and as g(x1) = F (x0, y0) and g(y1) = F (x0, y0). Thus 2.10 and 2.11 hold for n = 0. Suppose

now that 2.10 and 2.11 hold for some fixed n � 0. Then, since F has a mixed g- monotone property, from

2.8 and 2.10

g(xn+1) = F (xn, yn) � F (xn+1, yn), (yn+1, xn) � F (yn, xn) = g(yn+1) (2.13)

and from 2.8 and 2.11,

g(xn+2) = F (xn+1, yn+1) � F (xn+1, yn), F (yn+1, xn) � F (yn+1, xn+1) = g(yn+2) (2.14)
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Now from 2.13 and 2.14, we get

g(xn+1) � g(xn+2), g(yn+1) � g(yn+2) (2.15)

Thus, by the mathematical induction, we conclude that 2.8 and 2.10 hold for all n � 0.Therefore,

g(x0) � g(x1) � g(x2) � ....... � g(xn) � g(xn+1) � .....

g(y0) � g(y1) � g(y2) � ....... � g(yn) � g(yn+1) � .....
(2.16)

Denote

δn = q(g(xn), g(xn+1)) + q(g(yn), g(yn+1)) (2.17)

We show that

δn � (r + s)ψ (δn−1) (2.18)

Since g(xn−1) � g(xn) and g(yn−1) � g(yn), from 2.5 and 2.15 we have

q(g(xn), g(xn+1)) = q(F (xn−1, yn−1), F (xn, yn))

q(F (xn−1, yn−1), F (xn, yn)) � ψ (rq(g(xn−1), g(xn)) + sq(g(yn−1), g(yn))) (2.19)

q(g(xn), g(xn+1)) � ψ (rq(g(xn−1), g(xn)) + sq(g(yn−1), g(yn))) (2.20)

Similarly, we have

q(g(yn), g(yn+1)) = q(F (yn−1, xn−1), F (yn, xn))

q(g(yn), g(yn+1)) � ψ (rq(g(yn−1), g(yn)) + sq(g(xn−1), g(xn))) (2.21)

Adding 2.20 and 2.21 we obtain 2.18. Since ψ < t for t > 0, it follows, from 2.18, that

0 � δn � (r + s)δn−1 � (r + s)2δn−2 � ...... � (r + s)nδ0 (2.22)

as n→∞ we get
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lim
n→∞

δn = 0 (2.23)

Thus, ‘

lim
n→∞

[q(g(xn), g(xn+1)) + q(g(yn), g(yn+1))] = 0 (2.24)

Now we prove that {g(xn)} and {g(yn)} are Cauchy sequences. For m > n, and since ψ(t), t for each

t > 0, we have

δmn = q(g(xn), g(xm)) + q(g(yn), g(ym))

� [q(g(xn), g(xn+1)) + q(g(yn), g(yn+1))]

+ [q(g(xn+1), g(xn+2)) + q(g(yn+1), g(yn+2))] + .....+ [q(g(xm−1), g(xm)) + q(g(ym−1), g(ym))]

= δn + δn+1 + δn+2 + .......+ δm−1

� δn + (r + s)ψ (δn) + (r + s)ψ (δn+1) + .....+ (r + s)ψ (δm−2)

� δn + (r + s) (δn + δn+1 + δn+3 + .....+ δm−2)

� δn + (r + s)(δn + δn+1 + δn+2 + .......)

� δn + (r + s) (δn + (r + s)ψ (δn) + (r + s)ψ (δn+1) + .....+ (r + s)ψ (δm−2))

� δn + (r + s)(δn + (r + s)δn + (r + s)δn+1 + .......)

� δn + (r + s)(δn + (r + s)δn + (r + s)2δn + (r + s)3δn.......)

= δn(1 + (r + s) + (r + s)2 + (r + s)3 + ........)

=

(
1

1− (r + s)

)
δn

as n→∞

(
1

1− (r + s)

)
δn → 0

This means that for m > n > n0

q(g(xn), g(xm)) �
(

1

1− (r + s)

)
δn, q(g(yn), g(ym)) �

(
1

1−(r+s)

)
δn (2.25)

Therefore by Lemma 1.11 {g(xn)} and {g(yn)} are Cauchy sequences. Since X is complete, thee exists

x, y ∈ X

lim
n→∞

g(xn) = x, limn→∞g(yn) = y (2.26)

and 2.26 combined with the continuity of g yields
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lim
n→∞

g(xn) = g(x), limn→∞g(yn) = g(y) (2.27)

From 2.13 and continuity of F and q

g(g(xn+1)) = g(F (xn, yn)) = F (g(xn), g(yn)),

g(g(yn+1)) = g(F (yn, xn)) = F (g(yn), g(xn)).
(2.28)

We now show that g(x) = F (x, y) and g(y) = F (y, x).

Case -1. Suppose that assumption (a) holds. Taking the limit as n → ∞ in 2.28, and using the

continuity of F, we get

g(x) = lim
n→∞

g(g(xn+1)) = lim
n→∞

F (g(xn), g(yn)) = F
(

lim
n→∞

g(xn), lim
n→∞

g(yn)
)

= F (x, y),

g(y) = lim
n→∞

g(g(yn+1)) = lim
n→∞

F (g(yn), g(xn)) = F
(

lim
n→∞

g(yn), lim
n→∞

g(xn)
)

= F (y, x).
(2.29)

Thus,

g(x) = F (x, y), g(y) = F (y, x). (2.30)

Case - 2. Suppose that the assumption (b) holds. Let h(x) = gg(x). Now, since g is continuous,

{g(xn)} is non decreasing with g(xn) → x, g(xn) � x for all n ∈ N , and {g(yn)} is non increasing with

g(yn)→ y, g(yn) � y for all n ∈ N , so (h(xn)n�1 is non decreasing, that is

h(x0) � h(x1) � h(x2) � .............. � h(xn) � h(xn+1) � .... (2.31)

with h(xn) = gg(xn)→ g(x), h(xn) � g(x) for all n ∈ N , and (h(xn)n�1 is non increasing, that is

h(y0) � h(y1) � h(y2) � .............. � h(xn) � h(xn+1) � .... (2.32)

with h(yn) = gg(yn)→ g(y), h(yn) � g(y) for all n ∈ N . Let

γn = q(h(xn), h(xn+1)) + q(h(yn), h(yn+1)). (2.33)

Then replacing g by h and δ by γ in 2.17, we get γn � (r + s)ψ (γn−1) such that limn→∞ γn = 0.

We show that

lim
n→∞

q(h(xn), g(x)) + q(h(yn), g(y)) = 0,

lim
n→∞

q(h(xn), F (x, y)) + q(h(yn), F (y, x)) = 0.
(2.34)
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In δmn, replacing g by h and δ by γ, we get

q(h(xn), h(xn+1)) + q(h(yn), h(yn+1)) � 1

1− (r + s)
γn → 0, as n→∞, (2.35)

that is, for m > n > n0,

q(h(xn), h(xm)) � 1

1− (r + s)
γn, q(h(yn), h(ym)) � 1

1−(r+s)γn (2.36)

or for m > n = n0 + 1,

q(h(xn), h(xm)) �
(

1

1− (r + s)

)
γn0+1, q(h(yn), h(ym)) �

(
1

1−(r+s)

)
(γn0+1) (2.37)

Then, since h(xm) → g(x), h(ym) → g(y), and h(xn0+1), h(yn0+1) ∈ X, by axiom (Q2) of the Q-

function, we get

q(h(xn0+1), g(x)) �Mg(x), q(h(yn0+1), g(y)) �Mg(y) (2.38)

Therefore by the triangle inequality and 2.38 we have (for n > n0) Case - 3.

q(h(xn), g(x)) + q(h(yn), g(y)) � q(h(xn), g(xn+1)) + q(h(yn), g(yn+1))

+q(h(xn+1), g(x)) + q(h(yn+1), g(y))
(2.39)

q(h(xn), g(x)) + q(h(yn), g(y)) � γn +Mg(x) +Mg(y)

This implies that

q(h(xn), g(x)) � γn +Mg(x) +Mg(y),

q(h(yn), g(y)) � γn +Mg(x) +Mg(y).

Case - 4. Also, we have

q(h(xn), F (x, y)) + q(h(yn), F (y, x))

� q(h(xn), g(xn+1)) + q(h(yn), g(yn+1))

+ q(h(xn+1), F (x, y)) + q(h(yn+1), F (y, x))

= γn + [q(F (g(xn), g(yn)), F (x, y) + q(F (g(yn), g(xn)), F (y, x)]

� γn + ψ (rq(gg(xn), g(x)) + sq(gg(yn), g(y)))

+ ψ (rq(gg(yn), g(y)) + sq(gg(xn), g(x)))
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or

q(h(xn), F (x, y)) + q(h(yn), F (y, x))

= γnψ(rq(h(xn), g(x)) + sq(h(yn), g(y)))

+ ψ(rq(h(yn), g(y)) + sq(h(xn), g(x)))

= γn2ψ(rq(h(xn), g(x)) + sq(h(yn), g(y)))

� γn + (r + s)(q(h(xn), g(x)) + q(h(yn), g(y))))

� γn + (r + s)(γn +Mg(x) +Mg(y))

= µγnwhereµ = (r + s)

(
1 +

1

1− (r + s)
+

1

(1− (r + s))

)
That is, for n > n0,

q(h(xn), F (x, y)) � µγn, q(h(yn), F (y, x)) � µγn (2.40)

Hence by the Lemma 1.11

g(x) = F (x, y), g(y) = F (y, x) (2.41)

Thus, F and g have a coupled coincidence point.

Following example shows that Theorem 2.7 is generalization of Theorem 2.4.

Example 2.8. Let X = [0,∞), with the usual partial ordered �. Defined d : X ×X → R+ by

d(x, y) =

{
y − x, if x = y

2(x− y) otherwise

and q : X ×X → R+ by

q(x, y) =| x− y |, ∀x, y ∈ X (2.42)

Then d is a quasi metric and q is a Q- function on X. Thus, (X, d,�) is a partially ordered complete

quasi metric space with Q- function q on X. Let ψ(t) = t
2 , for t > 0.Defined F : X ×X → X by

F (x, y) =

{
2x−3y

6 , if x � y
0 x ¡ 0

and g : X → X by g(x) = 6x
r+s where 0 < r + s < 1. Then F has the mixed g-monotone property with

g(F (x, y)) =

{
2x−3y
r+s , if x � y

0 x ¡ 0
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It is easy to see that

g(F (x, y)) = F (g(x), g(y)) (2.43)

and F,g are both continuous in their domains and F (X ×X) ⊆ g(X). Let x, y, u, v ∈ X be such that

g(x) � g(u) and g(y) � g(v). There are four possibilities for 2.5 to hold. We first compute expression on

the left 2.5 for these cases:

Case- [1] x � y and u � v

q(F (x, y), F (u, v)) =| F (x, y)− F (u, v) |

= | (2x− 3y)

6
− (2u− 3v)

6
|

=
1

6
| 2(x− u)− 3(y − v) |

� 1

3
{| x− y | +1

2
| y − v |}.

Case- [2] x � y and u < v

q(F (x, y), F (u, v)) =| F (x, y)− 0 |

= | (2x− 3y)

6
− (2u− 3v)

6
|

=
1

3
| (x− u)− 1

2
(y − v) |

� 1

3
{| x− y | +1

2
| y − v |}.

Case- [3] x < y and u � v

q(F (x, y), F (u, v)) =| 0− F (u, v) |

= | (2x− 3y)

6
− (2u− 3v)

6
|

=
1

3
| (x− u)− 1

2
(y − v) |

� 1

3
{| x− y | +1

2
| y − v |}.

Case- [4] x < y and u < v

q(F (x, y), F (u, v)) = 0

On the other hand (in all the above four cases), we have
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ψ (rq(g(x), g(u)) + sq(g(y), g(v)))

� rq(g(x), g(u)) + sq(g(y), g(v))

� (r + s)

4

[
5

(r + s)
[| x− u | + | y − v |]

]
� 1

3
| x− u | +1

2
| y − v |]

Thus, f satisfies the condition 2.5 of Theorem 2.7. Now suppose that (xn)n�1; (yn)n�1, be respectively

non decreasing and non increasing sequences such that xn → x and yn → y, then by Theorem 2.7 xn � x
and yn � y for all n � 1 Let x0 = 0 and y0 = 6(r + s). Then this point satisfies the relations

g(x0) = 0 = F (x0, y0), as x0 < y0and g(y0) = 36 > r + s = F (y0, x0) (2.44)

Therefore by Theorem 2.7, there exists x, y ∈ X such that g(x) = F (x, y) and g(y) = F (y, x).

It is easily to see that Example 2.8 is not true for Theorem 2.4.

Corollary 2.9. Let (X,�, d) be a partially ordered complete quasi metric space with a Q-function q on

X. Assume that the function ψ : [0,+∞)→ [0,+∞) is such that ψ(t) < t for each t > 0. Further suppose

that k ∈ (0, 1) and F : X ×X → X , g : X → X are such that F has the mixed g-monotone property and

q(F (x, y), F (u, v)) � kψ

(
q(g(x), g(u)) + q(g(y), g(v))

2

)
(2.45)

for all x, y, u, v ∈ X for which g(x) � g(u) and g(y) � g(v). Suppose that F (X ×X) ⊆ g(X), and g is

continuous and commutes with F, and also suppose that either

(a) F is continuous or

(b) X has the following property:

(i) if a non decreasing sequence {xn} → x then xn � x for all n,

(ii) if a non increasing sequence {yn} → y then yn � y for all n.

If there exists x0, y0 ∈ X such that

g(x0) � F (x0, y0), g(y0) � F (y0, x0) (2.46)

then there exist x, y ∈ X such that

g(x) = F (x, y), g(y) = F (y, x) (2.47)

that is F and g have a coupled coincidence.

Proof. It is easily to see that if we take r = s = k
2 where k ∈ (0, 1) and from the property of ψ in Theorem

2.7 then we get Corollary 2.9.
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Corollary 2.10. Let (X,�, d) be a partially ordered complete quasi- metric space with a Q- function q

on X. Further, suppose that r, s ∈ (0, 1), 0 < r + s < 1 and F : X ×X → X; g : X → X are such that

F has the mixed g-monotone property and

q(F (x, y), F (u, v)) � rq(g(x), g(u)) + sq(g(y), g(v)) (2.48)

for all x, y, u, v ∈ X for which g(x) � g(u) and g(y) � g(v). Suppose that F (X ×X) ⊆ g(X), and g

is continuous and commutes with F, and also suppose that either

(a) F is continuous or

(b) X has the following property:

(i) if a non decreasing sequence {xn} → x then xn � x for all n,

(ii) if a non increasing sequence {yn} → y then yn � y for all n.

If there exists x0, y0 ∈ X such that

g(x0) � F (x0, y0), g(y0) � F (y0, x0) (2.49)

then there exist x, y ∈ X such that

g(x) = F (x, y), g(y) = F (y, x) (2.50)

that is F and g have a coupled coincidence.

Proof. Taking ψ(t) = t in Theorem 2.7, we obtain 2.10.

Now, we will prove the existence and uniqueness theorem of a coupled common fixed point, Note that

(S,�) is a partial ordered set, then endow the product S × S with the following partial order;

∀(x, y), (u, v) ∈ S × S, (x, y) � (u, v)⇐⇒ x � u, y � v. (2.51)

From Theorem 2.7, it follows that the set C(F,g) of coupled coincidence is non empty.

Theorem 2.11. The hypothesis of Theorem 2.7 holds. Suppose that for every (x, y), (y∗, x∗) ∈ X ×
X there exists a (u, v) ∈ X × X such that (F (u, v), F (v, u)) is comparable to (F (x, y), F (y, x)) and

(F (x∗, y∗), F (y∗, x∗)). Then F and g have a unique common coupled fixed point; that is, there exist a

unique (x, y) ∈ X ×X such that

x = g(x) = F (x, y), y = g(y) = F (y, x) (2.52)

Proof. By Theorem 2.7 C(F, g) 6= φ. Let (x, y), (x∗, y∗) ∈ C(F, g). We show that

g(x) = F (x, y), g(y) = F (y, x)

and

g(x∗) = F (x∗, y∗), g(y∗) = F (y∗, x∗)
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then

g(x) = g(x∗), g(y) = g(y∗) (2.53)

By assumption therre is (u, v) ∈ X ×X such that (F (u, v), F (v, u)) is comparable with (F (x, y), F (y, x))

and (F (x∗, y∗), F (y∗, x∗)). Put u0 = u, v0 = v and choose u1, v1 ∈ X so that g(u1) = F (u0, v0) and

g(v1) = F (v0, u0). Then as the proof of the Theorem 2.7, we can inductively define sequences {g(un)}
and {g(vn)} such that

g(un+1) = F (un, vn), g(vn+1) = F (vn, un) (2.54)

Further, set x0 = x, y0 = y, x∗0 = x∗, y∗0 = y∗ and as above, define the sequences {g(xn)}, {g(yn)},
{g(x∗n)} and {g(y∗n)} . Then it is easy to show that

g(xn) = F (x, y), g(yn) = F (y, x),

g(x∗n) = F (x∗, y∗), g(y∗n) = F (y∗, x∗)

for all n

� 1. Since (F (x, y), F (y, x)) = (g(x1), g(y1)) = (g(x), g(y)) and (F (u, v), F (v, u)) = (g(u1), g(v1)) are

comparable therefore g(x) � g(u1) and g(y) � g(v1). It is easy to show that (g(x), g(y)) and (g(un), g(vn))

are comparable, that is, g(x) � g(u1) and g(y) � g(v1) for all n � 1. From 2.5 and property of ψ, we

have

q(g(un+1), g(x)) + q(g(vn+1), g(y))

= q(F (un, vn), F (x, y)) + q(F (vn, un), F (y, x))

� ψ(rq(g(un), g(x)) + sq(g(vn), g(y))

+ ψ(rq(g(vn), g(y)) + sq(g(un), g(x))

= 2ψ(rq(g(un), g(x)) + sq(g(vn), g(y))

� (r + s)(rq(g(un), g(x)) + sq(g(vn), g(y))

� ψ(rq(g(un−1), g(x)) + sq(g(vn−1), g(y))

+ ψ(rq(g(vn−1), g(y)) + sq(g(un−1), g(x))

= 2ψ(rq(g(un−1), g(x)) + sq(g(vn−1), g(y))

� (r + s)2(rq(g(un−1), g(x)) + sq(g(vn−1), g(y))

� ψ(rq(g(un−2), g(x)) + sq(g(vn−2), g(y))

+ ψ(rq(g(vn−2), g(y)) + sq(g(un−2), g(x))

= 2ψ(rq(g(un−2), g(x)) + sq(g(vn−2), g(y))

� (r + s)3(rq(g(un−2), g(x)) + sq(g(vn−2), g(y))

� ..... � (r + s)n(q(g(u0), g(x)) + q(g(v0), g(y))

(r + s)nt0 → 0
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as n→∞ where t0 = q(g(u0), g(x)) + q(g(v0), g(y)). From this it follows that, for each n ∈ N

q(g(un+1, g(x)) � (r + s)nt0, q(g(vn+1, g(y)) � (r + s)nt0 (2.55)

similarly, one can prove that

q(g(un+1, g(x∗)) � (r + s)nt′0, q(g(vn+1, g(y∗)) � (r + s)nt′0 (2.56)

where t′0 = q(g(u0), g(x∗)) + q(g(v0), g(y∗)). Thus by Lemma 1.11, g(x) = g(x∗) and g(y) = g(y∗). Since

g(x) = F (x, y) and g(y) = F (y, x), by commutativity of F and g we have

g(g(x)) = g(F (x, y)) = F (g(x), g(y)), g(g(y)) = g(F (y, x)) = F (g(y), g(x)), (2.57)

Denote g(x) = z, g(y) = w. Then from 2.57

g(z) = F (z, w), g(w) = F (w, z) (2.58)

Thus, (z, w) is a coupled coincidence point. Then, from 2.53, with x∗ = z and y∗ = w, it follows that

g(z) = g(x) and g(w) = g(y); that is

g(z) = z, g(w) = w, (2.59)

From 2.58 and 2.59

z = g(z) = F (z, w), w = g(w) = F (w, z) (2.60)

Therefore, (z, w) is a coupled common fixed point of F and g. To prove the uniqueness, assume that

(p, q) is another coupled common fixed point. Then, by 2.53, we have p = g(p) = g(z) = z and

q = g(q) = g(w) = w.

Corollary 2.12. Let (X,�, d) be a partially ordered complete quasi- metric space with a Q- function q

on X. Assume that the function ψ : [0,∞)→ [0,∞) is such that

ψ(t) < t, for eacht > 0. (2.61)

Further, suppose that r, s ∈ (0, 1), 0 < r + s < 1 and F : X × X → X; such that F has the mixed

monotone property and

q(F (x, y), F (u, v)) � ψ (rq(x, u) + sq(y, v)) (2.62)

for all x, y, u, v ∈ X for which x � u and y � v.

(a) F is continuous or

(b) X has the following property:

(i) if a non decreasing sequence {xn} → x then xn � x for all n,

(ii) if a non increasing sequence {yn} → y then yn � y for all n.
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If there exists x0, y0 ∈ X such that

x0 � F (x0, y0), y0 � F (y0, x0) (2.63)

then there exist x, y ∈ X such that

x = F (x, y), y = F (y, x). (2.64)

Further, if x0, y0 are comparable then x = y, that is x = F (x, y)

Proof. It is enough if we take g = I ( the identity mapping in X) in Theorem 2.7.

Corollary 2.13. Let (X,�, d) be a partially ordered complete quasi- metric space with a Q- function q

on X. Suppose that r, s ∈ (0, 1), 0 < r+ s < 1 and F : X×X → X; such that F has the mixed monotone

property and

q(F (x, y), F (u, v)) � rq(x, u) + sq(y, v) (2.65)

for all x, y, u, v ∈ X for which x � u and y � v.

(a) F is continuous or

(b) X has the following property:

(i) if a non decreasing sequence {xn} → x then xn � x for all n,

(ii) if a non increasing sequence {yn} → y then yn � y for all n.

If there exists x0, y0 ∈ X such that

x0 � F (x0, y0), y0 � F (y0, x0) (2.66)

then there exist x, y ∈ X such that

x = F (x, y), y = F (y, x). (2.67)

Further, if x0, y0 are comparable then x = y, that is x = F (x, y)

Proof. Taking ψ(t) = t in Corollary 2.12, we obtain Corollary 2.13.
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