International Journal of Mathematics And Its Applications
Vol. 1 No. 1 (2013), pp.39-45.
ISSN: 2347-1557(online)

On Sums of s-orthogonal Matrices

S.Krishnamoorthy* and K.Jaikumar ${ }^{\dagger \cdot 1}$
*Department of Mathematics, Government Arts College (Autonomous), Kumbakonam, Tamilnadu, India. profkrishnamoorthy@gmail.com.
${ }^{\dagger}$ Department of Mathematics, Arasu Engineering College, Kumbakonam, Tamilnadu, India.
kjaikumar@hotmail.com

Abstract

In this paper we discussed the sum of s-orthogonal and s-unitary matrices. Also we show that every $A \in M_{n}\left(\mathbb{Z}_{2 n-1}\right)$ can be written as a sum of s-orthogonal matrices in M_{n}. Moreover, we show that every $A \in M_{n}\left(\mathbb{Z}_{2 k}\right)$ can be written a sum of of s-orthogonal matrices in $M_{n}\left(\mathbb{Z}_{2 k}\right)$ if and only if the row sums and column sums of A have the same parities.

Keywords : s-orthogonal matrix, s-unitary matrix, Sum of s-orthogonal and s-unitary matrices.

1 Introduction and Basic Definitions

Let $\mathbb{F} \in\{\mathbb{R}, \mathbb{C}, \mathbb{H}\}$. Let $\mathcal{U}_{n}^{s}(\mathbb{F})$ be the set of s-unitary matrices in $M_{n}(\mathbb{F})$, and let $\mathcal{O}_{n}^{s}(\mathbb{F})$ be the set of s-orthogonal matrices in $M_{n}(\mathbb{F})$. Suppose $n \geq 2$. In this chapter we show that every $A \in M_{n}(\mathbb{F})$ can be written as a sum of matrices in $\mathcal{U}_{n}^{s}(\mathbb{F})$ and of matrices in $\mathcal{O}_{n}^{s}(\mathbb{F})$. Let $A \in M_{n}(\mathbb{F})$ be given and let $k \geq 2$ be the least integer that is a least upper bound of the singular values of A. When $\mathbb{F}=\mathbb{C}$, we show that A can be written as a sum of k matrices from $\mathcal{U}_{n}^{s}(\mathbb{F})$. When $\mathbb{F}=\mathbb{R}$, we show that if $k=3$, then A can

[^0]be written as a sum of 6 s-orthogonal matrices; if $\mathrm{k}=2$, or if $k \geq 4$, we show that A can be written as a sum of $k+2$ s-orthogonal matrices.

Let $\mathbb{F}=\mathbb{C}($ the set of complex numbers) or $\mathbb{F}=\mathbb{R}$ (the set of real numbers). Let n be a given positive integer. We let $M_{n}(\mathbb{F})$ be the set of all $n \times n$ matrices with entries in \mathbb{F}. We also let $E_{i j} \in M_{n}(\mathbb{F})$ be the matrix whose (i, j) entry is 1 and all other entries are 0 .

We study the sums of s-unitary matrices and we also study the sums of s-orthogonal matrices. We determine which matrices (if any) in $M_{n}(\mathbb{F})$ can be written as a sum of s-unitary or s-orthogonal matrices. We note that the sum of unitary matrices in $M_{n}(\mathbb{C})$) has been previously studied (see [1] and the references therein). Moreover, for $A, B \in M_{n}(\mathbb{C})$, sums of the form $U A U^{*}+V B V^{*}$, where $U, V \in M_{n}(\mathbb{C})$ are unitary, have also been studied [2]. In this paper we extend the result concerning unitary and orthogonal matrices into s-unitary and s-orthogonal matrices.

Notation 1.1. The secondary transpose (conjugate secondary transpose) of A is defined by $A^{s}=V A^{T} V$ $\left(A^{\Theta}=V A^{*} V\right)$, where " V "is the fixed disjoint permutation matrix with units in its secondary diagonal.

Definition 1.2. [3] Let $A \in \mathcal{M}_{n}(F)$
(i). The matrix A is called s-normal, if $A A^{\Theta}=A^{\Theta} A$
(ii). The matrix A is called s-orthogonal, if $A A^{s}=A^{s} A=I$. That is $A^{T} V A=V$
(iii). The matrix A is called s-unitary, if $A A^{\Theta}=A^{\Theta} A=I$. That is $A^{*} V A=V$

Lemma 1.3. Let n be a given positive integer. Let $\mathcal{G} \subset M_{n}(\mathbb{F})$ be a group under multiplication. Then $A \in M_{n}(\mathbb{F})$ can be written as a sum of matrices in \mathcal{G} if and only if for every $Q, P \in \mathcal{G}$, the matrix $Q A P$ can be written as a sum of matrices in \mathcal{G}.

Notice that both $\mathcal{U}_{n}^{s}(\mathbb{F})$ and $\mathcal{O}_{n}^{s}(\mathbb{F})$ are groups under multiplication. Let $\alpha \in \mathbb{F}$ be given. Then Lemma 1.3 guarantees that for each $Q \in \mathcal{G}$, we have that αQ can be written as a sum of matrices from \mathcal{G} if and only if αI can be written as a sum of matrices from \mathcal{G}.

Lemma 1.4. Let $n \geq 2$ be a given integer. Let $G \subset M_{n}(\mathbb{F})$ be a group under multiplication. Suppose that \mathcal{G} contains $K \equiv \operatorname{diag}(1,-1, \ldots,-1)$ and the permutation matrices. Then every $A \in M_{n}(\mathbb{F})$ can be written as a sum of matrices in \mathcal{G} if and only if for each $\alpha \in \mathbb{F}, \alpha I$ can be written as a sum of matrices in \mathcal{G}.

Proof. The forward implication is trivial. For the other direction, suppose that for each $\alpha \in \mathbb{F}, \alpha I$ can be written as a sum of matrices in \mathcal{G}. Now, $K \in \mathcal{G}$ so that for each $\alpha \in \mathbb{F}$, Lemma 1.3 guarantees that αK can also be written as a sum of matrices in \mathcal{G}. It follows that $\alpha E_{11}=\frac{\alpha}{2} I+\frac{\alpha}{2} K$ can be written as a sum of matrices in \mathcal{G}. Now, for each $1 \leq i, j \leq n$, notice that $E_{i j}=P E_{11} Q$ for some permutation matrices P and Q , and that $P, Q \in \mathcal{G}$. Therefore, if $A \in M_{n}(\mathbb{F})$, then A can be written as a sum of matrices in \mathcal{G}, as $A=\left[a_{i j}\right]=\sum_{i, j} a_{i j} E_{i j}$.

Lemma 1.5. Let $k \geq 2$ be a given integer. Let $\mathcal{A}_{k} \equiv\{z \in \mathbb{C}:|z| \leq k\}$ and let $\mathcal{C}_{k} \equiv\left\{\sum_{j=1}^{k} e^{i \theta_{j}}: \theta_{j} \in\right.$ \mathbb{R} forj $=1, \ldots, k\}$. Then $\mathcal{A}_{k}=\mathcal{C}_{k}$.

2 Sums of s-orthogonal Matrices

The only matrices in $\mathcal{O}_{1}^{s}(\mathbb{F})$ are ± 1. Hence, not every element of $M_{1}(\mathbb{F})$ can be written as a sum of elements in $\mathcal{O}_{1}^{s}(\mathbb{F})$. In fact, only the integers can be written as a sum of elements of $\mathcal{O}_{1}^{s}(\mathbb{F})$.

2.1 The Case $\mathcal{U}_{n}^{s}(\mathbb{C})$

Let $\alpha \in \mathbb{C}$ be given. Then there exist an integer $k \geq 2$ and $\theta_{1}, \ldots, \theta_{k} \in \mathbb{R}$ such that $\alpha=f_{k}\left(\theta_{1}, \ldots, \theta_{k}\right)$. Now, notice that $\alpha I=f_{k}\left(\theta_{1}, \ldots, \theta_{k}\right) I=e^{i \theta_{1}} I+\ldots+e^{i \theta_{k}} I$ is a sum of matrices in $\mathcal{U}_{n}^{s}(\mathbb{C})$. When $n=1$, every $\alpha \in \mathbb{C}$ can be written as a sum of elements of $\mathcal{U}_{1}^{s}(\mathbb{C})$. When $n \geq 2$, Lemma 1.4 guarantees that every $A \in M_{n}(\mathbb{C})$ can be written as a sum of matrices in $\mathcal{U}_{n}^{s}(\mathbb{C})$.

Lemma 2.1. Let n be a given positive integer. Then every $A \in M_{n}(\mathbb{C})$ can be written as a sum of matrices in $\mathcal{U}_{n}^{s}(\mathbb{C})$.

Let $A \in M_{n}(\mathbb{C})$ be given. We look at the number of matrices that make up the sum A .
Let $\alpha \in \mathbb{C}$ be given. If $|\alpha| \leq k$ for some positive integer k , then $\alpha \in \mathcal{A}_{k}$. Moreover, $\alpha \in \mathcal{A}_{m}$ for every integer $m \geq k$. For any such m, Lemma 1.5 uarantees that there exist $\theta_{1}, \ldots, \theta_{m} \in \mathbb{R}$ such that $\alpha=e^{i \theta_{1}} I+\ldots+e^{i \theta_{m}} I$. However, if $|\alpha|>k$, then $\alpha \neq \mathcal{A}_{k}$ and α cannot be written as a sum of k elements of $\mathcal{U}_{1}^{s}(\mathbb{C})$.

Write $A=U \Sigma V$ (the singular value decomposition of A, where $U, V \in M_{n}(\mathbb{C})$ are s-unitary and $\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ with $\sigma_{1} \geq \ldots \geq \sigma_{n} \geq 0$. Let k be the least integer such that $\sigma_{1} \leq k$. Suppose that $k \leq 2$. Then, for each l, we have $\sigma_{l} \in \mathcal{A}_{k}$. Moreover, $\sigma_{1} \notin \mathcal{A}_{k-1}$. Hence, A cannot be written as a sum of $k-1$ s-unitary matrices. However, for each l, we have $\sigma_{l}=e^{i \theta_{l 1}}+\ldots+e^{i \theta_{l k}}$, where each $\theta_{l 1}, \ldots, \theta_{l k} \in \mathbb{R}$. For each $t=1, \ldots, k$, set $U_{t}=\operatorname{diag}\left(e^{i \theta_{1 t}}, \ldots, e^{i \theta_{n t}}\right)$. Then $U_{t} \in M_{n}(\mathbb{C})$ is s-unitary and $\sum_{t=1}^{k} U_{t}=\Sigma$. Hence, A can be written as a sum of k s-unitary matrices.

Suppose that $k=1$. If $\sigma_{n}=1$, then $\Sigma=I$ and A is s-unitary. If $\sigma_{n} \notin 1$, then for each l, we have $\sigma_{l} \in \mathcal{A}_{2}$, and A can be written as a sum of two s-unitary matrices. We summarize our results.

Theorem 2.2. Let $A \in M_{n}(\mathbb{C})$ be given. Let k be the least (positive) integer so that there exist $U_{1}, \ldots, U_{k} \in$ $\mathcal{U}_{n}^{s}(\mathbb{C})$ satisfying $U_{1}+\ldots+U_{k}=A$.
(1). If A is s-unitary, then $k=1$.
(2). If A is not s-unitary and $\sigma_{1}(A) \in 2$, then $k=2$.
(3). If $m \geq 2$ is an integer such that $m<\sigma_{1}(A) \leq m+1$, then $k=m+1$.

For positive integers $m \geq k$, we have $\mathcal{A}_{k} \subseteq \mathcal{A}_{m}$. Hence, every $U \in \mathcal{U}_{n}^{s}(\mathbb{C})$ can be written as a sum of two or more elements of $\mathcal{U}_{n}^{s}(\mathbb{C})$. It follows that every $A \in M_{n}(\mathbb{C})$ that can be written as a sum of k elements of $\mathcal{U}_{n}^{s}(\mathbb{C})$ can be written as a sum of m elements of $\mathcal{U}_{n}^{s}(\mathbb{C})$.

2.2 The Case $\mathcal{O}_{n}^{s}(\mathbb{C})$

Theorem 2.3. Let $n \geq 2$ be a given integer. Then every $A \in M_{n}(\mathbb{C})$ can be written as a sum of matrices from $\mathcal{O}_{n}^{s}(\mathbb{C})$.

Suppose that $A=Q_{1}+Q_{2}$, where $Q_{1}, Q_{2} \in \mathcal{O}_{n}^{s}(\mathbb{C})$. Then one checks that $A A^{s}=Q_{1} A^{s} A Q_{1}^{s}$, so that $A A^{s}$ and $A^{s} A$ are similar. Analogue to the proof of Theorem 13 of 4 ensures that $A+Q S$, where Q is s-orthogonal and S is s-symmetric (or that A has a QS decomposition). Suppose now that has a $Q S$ decomposition. Is it true that A can be written as a sum of two (complex) s-orthogonal matrices? Take the case $\mathrm{n}=1$, and notice that every $A \in M_{n}(\mathbb{C})$ is a scalar and has a $Q S$ decomposition. However, only the integers can be written as a sum of orthogonal matrices in this case.

Lemma 2.4. Let an integer $n \geq 2$ and $0 \neq \alpha \mathbb{C}$ be given. If $\alpha I=Q+V$ is a sum of two matrices from $\mathcal{O}_{n}^{s}(\mathbb{C})$, then there exists a s-skew symmetric $D \in M_{n}(\mathbb{C})$ such that $Q=\frac{\alpha}{2} I+D, V=\frac{\alpha}{2} I-D$, and $D D^{s}=\left(1-\frac{\alpha^{2}}{4}\right) I$. Conversely, if there exists a s-skew symmetric $D \in M_{n}(\mathbb{C})$ such that $D D^{s}=\left(1-\frac{\alpha^{2}}{4}\right) I$, then $Q \equiv \frac{\alpha}{2} I+D$ and $V \equiv \frac{\alpha}{2} I-D$ are in $\mathcal{O}_{n}^{s}(\mathbb{C})$ and $Q+V=\alpha I$.

Proof. Let an integer $n \geq 2$ and $0 \neq \alpha \in \mathbb{C}$ be given. Suppose that $\alpha I \in M_{n}(\mathbb{C})$ can be written as a sum of two s-orthogonal matrices, say, $\alpha I=Q+V$. Write $Q=\left[a_{i j}\right]=\left[q_{1} \ldots q_{n}\right]$ and $V=\left[b_{i j}\right]=\left[v_{1} \ldots v_{n}\right]$. Then, $b_{i j}=-a_{i j}$ for $i \neq j$. Now, for each $i=1, \ldots, n$, we have $\sum_{j=1}^{n} a_{i j}^{2}=q_{i}^{s} q_{i}=1=v_{i}^{s} v_{i}=\sum_{j=1}^{n} b_{i j}^{2}=$ $b_{i i}^{2}+\sum_{j \neq i, j=1}^{n} a_{i j}^{2}$.

Hence, $b_{i i}= \pm a_{i i}$. Because $Q+V=\alpha I$ and $\alpha \neq 0$, we have $b_{i i}=a_{i i}=\frac{\alpha}{2}$. Set $D=\left[d_{i j}\right]$, with $d_{i j}=a_{i j}$ if $i \neq j$, and $d_{i i}=0$, so that $Q=\frac{\alpha}{2} I+D$ and $V=\frac{\alpha}{2} I-D$. Now, since Q and V are s-orthogonal, we have

$$
\begin{equation*}
Q Q^{s}=\frac{\alpha^{2}}{4} I+\frac{\alpha}{2}\left(D+D^{s}\right)+D D^{s}=I \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
V V^{s}=\frac{\alpha^{2}}{4} I-\frac{\alpha}{2}\left(D+D^{s}\right)+D D^{s}=I \tag{2.2}
\end{equation*}
$$

Subtracting equation $\sqrt{2.2}$ from equation 2.1 , we get $D=-D^{s}$, so that D is s-skew symmetric. Moreover, $D D^{s}=\left(1-\frac{\alpha^{2}}{4}\right) I$. For the converse, suppose that $D \in M_{n}(\mathbb{C})$ is s-skew symmetric and satisfies $D D^{s}=\left(1-\frac{\alpha^{2}}{4}\right) I$. Set $Q \equiv \frac{\alpha}{2} I+D$ and set $V \equiv \frac{\alpha}{2} I-D$. Then one checks that both Q and V are s-orthogonal matrices and $Q+V=\alpha I$.

Theorem 2.5. Let n be a given positive integer. For each $\alpha \in \mathbb{C}$ and each s-orthogonal $Q \in M_{2 n}(\mathbb{C})$, αQ can be written as a sum of two s-orthogonal matrices.

Let an integer $n \geq 2$ be given. If $\alpha \in\{-2,0,2\}$, then one checks that $\alpha I \in M_{n}(\mathbb{C})$ can be written as a sum of two s-orthogonal matrices.

Theorem 2.6. Let $\alpha \in \mathbb{C}$ and let a positive integer n be given. Then $\alpha I \in M_{2 n+1}(\mathbb{C})$ can be written as a sum of two matrices from $\mathcal{O}_{n}^{s}(\mathbb{C})$ if and only if $\alpha \in\{-2,0,2\}$.

Proof. For the forward implication, let $\in \mathbb{C}$ and let a positive integer n be given. Suppose that $\alpha I \in$ $M_{2 n+1}(\mathbb{C})$ can be written as a sum of two s-orthogonal matrices. Then $\alpha=0$ or $\alpha \neq 0$. If $\alpha=0$, then $\alpha \in\{-2,0,2\}$. If $\alpha \neq 0$, we show that $\alpha \pm 2$. Lemma 2.4 guarantees that there exists a s-skew symmetric $D \in M_{n}(\mathbb{C})$ satisfying $D D^{s}=\left(1-\frac{\alpha^{2}}{4}\right) I$. Now, since n is odd, the s-skew symmetric D is singular. Hence, $D D^{s}$ is singular and $\alpha \pm 2$. The backward implication can be shown by direct computation.

2.3 The Case $\mathbb{F}=\mathbb{R}$ and $\mathbb{F}=\mathbb{H}$

Theorem 2.7. Let $n \geq 2$ be a given integer. Every $A \in M_{n}(\mathbb{R})$ can be written as a sum of matrices from $\mathcal{O}_{n}^{s}(\mathbb{R})=\mathcal{U}_{n}^{s}(\mathbb{R})$.

Theorem 2.8. Let a positive integer n and let $A \in M_{2 n}(\mathbb{R})$ be given. Suppose that $k \geq 2$ is an integer such that $\sigma_{1}(A) \leq k$. Then A can be written as a sum of $2 k$ matrices in $\mathcal{O}_{2 n}^{s}(\mathbb{R})$. Moreover, for every integer $m \geq 2 k$, the matrix A can be written as a sum of m matrices in $\mathcal{O}_{2 n}^{s}(\mathbb{R})$.

Proof. Let $A=U \Sigma V$ be a singular value decomposition of A. Then Lemma 1.3 guarantees that we only need to concern ourselves with Σ.

For $n=1$, notice that $\operatorname{diag}\left(\sigma_{1}, \sigma_{2}\right)=s I_{2}+r K_{2}$, where $s=\frac{1}{2}\left(\sigma_{1}+\sigma_{2}\right)$ and $t=\frac{1}{2}\left(\sigma_{1}-\sigma_{2}\right)$. Now, $0 \leq t \leq s \leq k$. Hence, $s I_{2}$ and $t K_{2}$ can each be written as a sum of k s-orthogonal matrices. Moreover, for each integer $p \geq k$, notice that $s I_{2}$ can be written as a sum of p s-orthogonal matrices. Hence, $s I_{2}+r K_{2}$ can be written as a sum of $p+k$ s-orthogonal matrices. For $n>1$, write $\Sigma=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{2 n-1}, \sigma_{2 n}\right)=$ $\operatorname{diag}\left(\sigma_{1}, \sigma_{2}\right) \oplus \ldots \oplus \operatorname{diag}\left(\sigma_{2 n-1}, \sigma_{2 n}\right)$. Notice now that for each $j=1, \ldots, n, \operatorname{diag}\left(\sigma_{2 j-1}, \sigma_{2 j}\right)$ can be written as a sum of 2 k s-orthogonal matrices, say $P_{j 1}, \ldots, P_{j(2 k)}$. For each $l=1, \ldots, 2 k$, set $Q_{l} \equiv P_{1 l} \oplus \ldots \oplus P_{n l}$, and notice that $\Sigma=Q_{1}+\ldots+Q_{2 k}$.

Finally, notice that for each integer $m \geq 2 k$ and for each each $j=1, \ldots, n$, the matrix $\operatorname{diag}\left(\sigma_{2 j-1}, \sigma_{2 j}\right)$ can be written as a sum of m s-orthogonal matrices.

Lemma 2.9. Let $C \in M_{2}(\mathbb{R})$ be given. Suppose that $k \geq 2$ is an integer such that $\sigma_{1}(C) \leq k$. Then for each integer $t \geq k+2, C$ can be written as a sum of t matrices from $\mathcal{U}_{2}^{s}(\mathbb{R})$.

Theorem 2.10. Let n be positive integer, and let $A \in M_{2 n}(\mathbb{R})$ be given. Suppose that $k \geq 2$ is an integer such that $\sigma_{1}(A) \leq k$. Then for each integer $t \geq k+2$, A can be written as a sum of t matrices in $\mathcal{U}_{2 n}^{s}(\mathbb{R})$.

Theorem 2.11. Let $A \in M_{2 n+1}(\mathbb{R})$ be given. Suppose $k \geq 2$ is an integer such that $\sigma_{1}(A) \leq k$. If $k \leq 3$, then A can be written as a sum of at most six matrices in $\mathcal{O}_{2 n+1}^{s}(\mathbb{R})$. If $k \geq 4$, then A can be written as a sum of $k+2$ matrices in $\mathcal{O}_{2 n+1}^{s}(\mathbb{R})$.

Theorem 2.12. Let n be a given positive integer. Let $A \in M_{n}(\mathbb{H})$ be given. Then A can be written as a sum of matrices from $\mathcal{U}_{n}^{s}(\mathbb{H})$. Moreover, if $k \geq 2$ is an integer such that $\sigma_{1}(A) \leq k$, then A can be written as a sum of k matrices from $\mathcal{U}_{n}^{s}(\mathbb{H})$.

Theorem 2.13. Let $n \geq 2$ be a given integer. Let $A \in M_{n}(\mathbb{H})$ be given. Then A can be written as a sum of matrices from $\mathcal{O}_{n}^{s}(\mathbb{H})$.

3 On Sums of s-orthogonal Matrices $M_{n}\left(\mathbb{Z}_{k}\right)$

Lemma 3.1. Let k and n be given positive integers. If $E_{11} \in M_{n}\left(\mathbb{Z}_{k}\right)$ can be written as a sum of matrices from $\mathcal{O}_{n, k}^{s}$, then every $A \in M_{n}\left(\mathbb{Z}_{k}\right)$ can be written as a sum of matrices in $\mathcal{O}_{n, k}^{s}$.

Lemma 3.2. Let k and n be given positive integers, with $k \geq 2$. Then $2 E_{11} \in M_{n}\left(\mathbb{Z}_{k}\right)$ can be written as a sum of matrices from $\mathcal{O}_{n, k}^{s}$.

Theorem 3.3. Let k and n be given positive integers, with $k \geq 2$. Then $A \in M_{n}\left(\mathbb{Z}_{2 k-1}\right)$ can be written as a sum of matrices from $\mathcal{O}_{n, 2 k-1}^{s}$.
Lemma 3.4. Let $a_{1}, \ldots, a_{k} \in \mathbb{Z}_{2 m}$ be given. If $a_{1}^{2}+\ldots+a_{k}^{2}=1$, then $a_{1}+\ldots+a_{k}$ is odd.
Proof. Notice that if there are an even number of ai that are odd, then the sum $a_{1}^{2}+\ldots+a_{k}^{2}$ is even. Hence, there are an odd number of a_{i} that are odd, and $a_{1}+\ldots+a_{k}$ is odd.

Theorem 3.5. Let k and n be given positive integers. If $A \in M_{n}\left(\mathbb{Z}_{2 k}\right)$ is s-orthogonal, then the row sums and the column sums of A are all odd.

Corollary 3.6. Let k and n be given positive integers. If $A \in M_{n}\left(\mathbb{Z}_{2 k}\right)$ is a sum of matrices in $\mathcal{O}_{n, 2 k}^{s}$, then the row sums of A have the same parities and the column sums of A have the same parities. Moreover, the row sums and the column sums also have the same parities.

Lemma 3.7. Let k and n be given positive integers with $n \geq 2$. Let $A \in M_{n}\left(\mathbb{Z}_{2 k}\right)$ have even entries only. Then A can be written as a sum of matrices in $\mathcal{O}_{n, 2 k}^{s}$.
Theorem 3.8. Let k be a given positive integer. Let $B=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in M_{n}\left(\mathbb{Z}_{2 k}\right)$. The following are equivalent.
(1). B can be written as a sum of matrices in $\mathcal{O}_{2,2 k}^{s}$.
(2). a and d have the same parities, and b and c have the same parities.
(3). The row sums of B and the column sums of B have the same parities.

Theorem 3.9. Let k and $n \geq 2$ be given positive integers. Let $B \in M n\left(\mathbb{Z}_{2 k}\right)$ be given. Then B can be written as a sum of matrices in $\mathcal{O}_{n, 2 k}^{s}$ if and only if the row sums of B and the column sums of B have the same parities.

Lemma 3.10. Let n and k be given positive integers with $n \geq 3$. Let $B=\left[b_{i j}\right] \in M_{n}\left(\mathbb{Z}_{2 k}\right)$ have an odd parity. Suppose that $b_{11}=1$. Suppose further that the entries in the first row are not all 1 and that the entries in the first column are not all 1. Then $B=C+D$, where $C=[1] \oplus F$, with $F \in M_{n-1}\left(\mathbb{Z}_{2 k}\right)$ having an odd parity and $D \in M_{n}\left(\mathbb{Z}_{2 k}\right)$ is a sum of matrices in $\mathcal{O}_{n, 2 k}^{s}$.

Proof. It is without loss of generality to assume that $b_{1 n}=0$ and $b_{n 1}=0$. When $n=3$, then $b_{12}=b_{21}=0$, and we may take $D=0$. Suppose now that $n \geq 4$. Let r_{1} be the first row of B and let c_{1} be the first column of B . Take s to be the vector with the same entries as r_{1} but with the first entry changed to 0 . Take t to be the vector which has the same entries as c_{1} except in the first position. Set D as the matrix with first and last columns t, first and last rows s, and 0 elsewhere. Notice that the number of 1 in t is even, and that the number of 1 in s is also even. Hence, D can be written as a sum of matrices that are permutation equivalent to $E_{2} \oplus 0$, and hence, can be written as a sum of matrices in $\mathcal{O}_{n, 2 k}^{s}$. Notice also that $C=B+D$ has the form $C=[1] \oplus F$, where $F \in M_{n-1}\left(\mathbb{Z}_{2}\right)$. Because B has an odd parity and because D has an even parity, F has an odd parity.

Corollary 3.11. Let $n \geq 2$ be a given integer. Then $B \in M_{n}(\mathbb{Z})$ can be written as a sum of s-orthogonal matrices in $M_{n}(\mathbb{Z})$ if and only if the row sums of B and the column sums of B have the same parities.

References

[1] F.Y. Wu, Additive combinations of special operators, Functional Analysis and Operator Theory Banach Center Publication, Institute of Mathematics, Polish Academy of Science, Warszawa 30(1994), 337-361.
[2] C.K. Li, Y.T. Poon and N.S. Sze, Eigenvalues of thw sum of matrices from unitary similarity orbits, SIAM J. Matrix Anal. Appl., 30(2)(2008), 560-581.
[3] S.Krishnamoorthy and K.Jaikumar, On s-orthogonal Matrices, Global Journal of Computational Science \& Mathematics 1 (1)(2011), 1-8.
[4] R.A.Horn and D.I.Merino, Contragredient equivalence: a canonical form and some applications, Linear Algebra Appl., 214(1995), 43-92.

Int. J. Math. And Its App. Online @ http://ijmaa.in

[^0]: ${ }^{1}$ Corresponding author E-Mail: kjaikumar@hotmail.com (K.Jaikumar)

