

International Journal of Mathematics And Its Applications Vol.1 No.1 (2013), pp.21-29. ISSN: 2347-1557(online)

A Note on s-unitary Similarity of a Complex Matrices

S.Krishnamoorthy* and K.Jaikumar †,1

*Department of Mathematics, Government Arts College (Autonomous), Kumbakonam, Tamilnadu, India. profkrishnamoorthy@gmail.com. †Department of Mathematics, Arasu Engineering College, Kumbakonam, Tamilnadu, India. kjaikumar@hotmail.com

Abstract: In this work a new s-unitary similarity transformation of a normal matrix to complex symmetric form will be discussed. The classical Speech criterion for the s-unitary similarity between two complex $n \times n$ matrices is extended to the s-unitary similarity between two matrix sets of cardinally m where discussed.

Keywords : s-Orthogonal, s-Unitary Matrices, Similarity of Matrices, u-Orthogonal Similarity of Matrices.

1 Introduction

Throughout this paper we use the following notation:

Notation 1.1. Let F be a field and let $\mathcal{M}_n(F)$ be the algebra of $n \times n$ matrices.

¹Corresponding author E-Mail: kjaikumar@hotmail.com (K.Jaikumar)

Notation 1.2. The secondary transpose (conjugate secondary transpose) of A is defined by $A^s = VA^T V$ $(A^{\Theta} = VA^*V)$, where "V" is the fixed disjoint permutation matrix with units in its secondary diagonal.

Definition 1.3. [5] Let $A \in \mathcal{M}_n(F)$

- (i). The matrix A is called s-normal, if $AA^{\Theta} = A^{\Theta}A$
- (ii). The matrix A is called s-orthogonal, if $AA^s = A^sA = I$. That is $A^TVA = V$
- (iii). The matrix A is called s-unitary, if $AA^{\Theta} = A^{\Theta}A = I$. That is $A^*VA = V$

Definition 1.4. [5] Let $A \in \mathcal{M}_n(F)$ and $B \in \mathcal{M}_n(F)$. A is said to be s-orthogonally similar (respectively s-unitarily) to B if there exists a s-orthogonal matrix $Q \in \mathcal{M}_n(F)$ such that $A = Q^s BQ(A = Q^{\Theta}BQ)$

2 s-unitary Similarity of a Complex Matrices

Theorem 2.1. Suppose A to be normal, having distinct singular values and $A = UBV^{\Theta}$, with U, V s-unitary and B a real upper bidiagonal matrix. Then the s-unitary similarity transformation $U^{\Theta}AU$ results in a normal complex symmetric matrix.

Proof. Assume that the factorization $B = U^{\Theta}AV$, satisfying the constraints above, is known for algorithms computing this factorization). The s-unitary matrices U and V can be combinations of either Householder or Given transformations or of both, but are constructed such that the matrix B is real.

We will prove now that the s-unitary similar matrix $A_U = U^{\Theta}AU$ is normal complex symmetric. Only the complex symmetry $A_U^s = A_U$ needs a formal proof, since normality is preserved under similarity. The following relations hold for $A_U A_U^{\Theta}$:

$$A_U A_U^{\Theta} = (U^{\Theta} A U) (U^{\Theta} A^{\Theta} U) = U^{\Theta} A A^{\Theta} U = (U^{\Theta} A V) (V^{\Theta} A^{\Theta} U) = B B^{\Theta}.$$
 (2.1)

The matrix B is real bidiagonal, implying that BB^{Θ} is real, symmetric and tridiagonal. Hence we have $BB^{\Theta} = \overline{BB^{\Theta}}$. This gives us for Equation (2.1)

$$A_U A_U^{\Theta} = B B^{\Theta} = B \bar{B}^{\Theta} = \bar{A}_U A_U^s \tag{2.2}$$

Assume that we have the following eigenvalue decomposition for $A_U = Q\Delta Q^{\Theta}$. Equation (2.2) leads us to the following two eigenvalue decompositions for the matrix product $A_U A_U^{\Theta}$:

$$Q|\Delta|^2 Q^\Theta = A_U A_U^\Theta = \bar{A}_U A_U^s = \bar{Q}|\Delta|^2 Q^s.$$

$$(2.3)$$

Since all singular values of A_U are distinct (remember that for normal matrices, $|\Delta| =$), the eigenvalue decompositions in Equation (2.3) are essentially unique and we obtain $QD = \bar{Q}$, with D a unitary diagonal matrix. This implies $A_U = Q\Delta Q^{\Theta} = Q\Delta \bar{Q}^s = Q\Delta (QD)^s = (QD^{1/2})\Delta (QD^{1/2})^s$, indicating that $A_U^s = A_U$ and hence the matrix A_U is complex symmetric.

Theorem 2.2. Let A be normal, having distinct singular values and $A = UBV^{\Theta}$, with U, V s-unitary and B a bidiagonal matrix. We have that $U^{\Theta}AU$ and $V^{\Theta}AV$ will be self-adjoint with respect to s-unitary diagonal matrices Ω_U and Ω_V respectively.

Proof. Construct two s-unitary diagonal matrices D_U and D_V such that the new bidiagonal matrix \hat{B} with $D_U^{\Theta}(U^{\Theta}AV)D_V = D_U^{\Theta}BD_V = \hat{B}$ is real. Let $A_U = U^{\Theta}AU$. Theorem 2.1 states that $D_U^{\Theta}A_UD_U$ is complex symmetric. This together with the s-unitarity of D_U implies $(D_U^{-1} = \bar{D}_U)$

$$D_U^{-1}A_U D_U = D_U^{\Theta} A_U D_U = (D_U^{\Theta} A_U D_U)^s = D_U A_U^s D_U^{-1}.$$
(2.4)

It remains to prove that there exists a Ω_U such that A_U is self-adjoint with respect to this matrix Ω_U . Take $\Omega_U = D_U^{-2}$, which is s-unitary diagonal. We obtain (use Equation (2.3) and (2.4)) $A_U^{\Theta} = \Omega_U^{-1} A_U^s \Omega_U = D_U^2 A_U^s D_U^{-2} = A_U$, proving thereby the selfadjointness. The proof for A_V proceeds identically.

Corollary 2.3. Suppose A to be normal, having distinct singular values and $A = UBV^{\Theta}$, with U, V s-unitary and B an upper bidiagonal matrix. Then there exist s-unitary diagonal matrices D_U and D_V such that $D_U^{\Theta}(U^{\Theta}AU)D_U$ and $D_V^{\Theta}(V^{\Theta}AV)D_V$ are complex symmetric matrices.

Corollary 2.4. Under the conditions of Theorem 2.1 one can obtain A_U and A_V of complex symmetric form and hence self-adjoint for the standard scalar product. This means that the weight matrix Ω equals the identity.

2.1 s-unitary Similarity of Matrix Families

Proposition 2.5. For any two $n \times n$ matrices A and B, the following assertions are equivalent:

- (1). A and B are s-unitarily similar,
- (2). the families $\{A, A^{\Theta}\}$ and $\{B, B^{\Theta}\}$ are unitarily similar,
- (3). the familes $\{A, A^{\Theta}\}$ and $\{B, B^{\Theta}\}$ are similar.

Proof. The implications $(1) \Rightarrow (2)$ and $(2) \Rightarrow (3)$ are obvious. Let us show that (3) implies (1). Let P be a nonsingular matrix such that

$$P^{-1}AP = B, \qquad P^{-1}A^{\Theta}P = B^{\Theta} \tag{2.5}$$

Then

$$U^{\Theta}AU = B \tag{2.6}$$

where U is the s-unitary factor in the polar decomposition P = SU. Indeed, equalities (1) imply that

$$PP^{\Theta}A = APP^{\Theta}.$$

Since the Hermitian factor S, which is a square root of PP^{Θ} , can be represented as a polynomial in PP^{Θ} , it follows from the relation above that SA = AS. This yields the desired result

$$B = P^{-1}AP = U^{\Theta}S^{-1}ASU = U^{\Theta}AU.$$

Proposition 2.6. If two families of normal matrices are similar, then they are s-unitarily similar.

Corollary 2.7. If two families of s-normal matrices are similar, then they are s-unitarily similar.

Proposition 2.8. For any matrices A and B, the following assertions are equivalent:

- (1). A and B are s-unitarily similar,
- (2). the pair $\{H_1, H_2\}$ and $\{G_1, G_2\}$ composed of the Hermitian components of A and B, respectively, are s-unitarily similar,
- (3). the pairs composed of the Hermitian components of A and B are similar.

Proof. The validity of implication $(3) \Rightarrow (2)$ follows from Proposition 2.6, because Hermitian matrices are normal. The fact that (2) implies (1) and (1) implies (3), follows from the definition of Hermitian Components.

Theorem 2.9. Completely reducible families α and β are similar if and only if

$$tr \ \alpha(\omega) = tr \ \beta(\omega) \quad \forall \ \omega \in \langle X \rangle.$$
(2.7)

Proof. The proof is obtained by applying the following well-known Theorem from [1] to representation of monoid $\langle X \rangle$ if for two completely reducible representations of a semigroup, the trace of both matrices corresponding to an arbitrary element are the same, then these representations are similar.

Theorem 2.10 (Specht[2]& [3]). Two complex matrices A and B are s-unitary similar if and only if the families

$$\{\alpha(x_1) = A, \alpha(x_2) = A^{\Theta}\} \quad and \quad \{\beta(x_1) = B, \beta(x_2) = B^{\Theta}\}$$
(2.8)

satisfy the condition

$$tr \ \alpha(\omega) = tr \ \beta(\omega) \quad \forall \ \omega \in \langle \{x_1, x_2\} \rangle.$$
(2.9)

Theorem 2.11. Two complex matrices A and B are s-unitarily similar if and only if the families

$$\{\alpha(x_1) = H_1, \alpha(x_2) = H_2\} \quad and \quad \{\beta(x_1) = G_1, \beta(x_2) = G_2\}$$
(2.10)

composed of the Hermitian components of these matrices satisfy condition (2.9).

Proposition 2.12. A family $\alpha : X \to M_n(\mathbb{C})$ is completely reducible if and only if it is similar sum of irreducible families.

Proposition 2.13. A family $\alpha : X \to M_n(\mathbb{C})$ is a normal family, then the space \mathbb{C}^n can be decomposed into an orthogonal sum of α -invarient subspaces that do not contain nontrivial α -invarient subspaces.

Proposition 2.14. Assume that two normal families $\alpha : X \to M_n(\mathbb{C})$ and $\beta : X \to M_n(\mathbb{C})$ are similar. Then α and β are s-unitarily similar if and only if $\alpha + \beta$ is a normal family. A Note on s-unitary Similarity of a Complex Matrices

Proof. Let U be a s-unitary matrix transforming α into β and f a polynomial such that $\alpha^{\Theta}(x) = \alpha(f)$. Then

$$\beta^{\Theta}(x) = U^{\Theta} \alpha^{\Theta}(x) U$$
$$= U^{\Theta} \alpha(f) U$$
$$= \beta(f).$$

Hence

$$(\alpha + \beta)^{\Theta}(x) = (\alpha + \beta)(f).$$
(2.11)

Since $x \in X$ is arbitrary, this proves the normality of the family $\alpha + \beta$.

Now, we assume that $\alpha + \beta$ is a normal family, that is for each $x \in X$, there exists $f \in \mathbb{C}[X]$ with property (2.11). Since

$$(\alpha + \beta)(f) = \alpha(f) \oplus \beta(f), \qquad (\alpha + \beta)^{\Theta}(x) = \alpha^{\Theta}(x) \oplus \beta^{\Theta}(x),$$

it follows from (2.11) that

$$\alpha^{\Theta}(x) = \alpha(f), \qquad \beta^{\Theta}(x) = \beta(f).$$
 (2.12)

Let P transform α into β :

$$P^{-1}\alpha(x)P = \beta(x), \qquad x \in X$$

Taking into account equalities (2.12), we can write

$$P^{-1}\alpha^{\Theta}(x)P = P^{-1}\alpha(f)P = \beta(f) = \beta^{\Theta}(x).$$

Thus, the matrices $\alpha(x)$ and $\beta(x)$ obey relations (2.5). Proceeding as in the proof of Proposition 2.5, we conclude that the s-unitary factor in the polar decomposition of P can be taken as a matrix transforming α in β .

Corollary 2.15. Assume that two s-normal families $\alpha : X \to M_n(\mathbb{C})$ and $\beta : X \to M_n(\mathbb{C})$ are similar. Then α and β are s-unitarily similar if and only if $\alpha + \beta$ is a s-normal family.

Proposition 2.16. If $\alpha_1 + ... + \alpha_s$ is a normal family, then any partial sum $\alpha_{i_1} + ... + \alpha_{i_t}, 1 \le i_1 < ... < i_t \le s$, also is a normal family.

Corollary 2.17. If $\alpha_1 + ... + \alpha_s$ is a s-normal family, then any partial sum $\alpha_{i_1} + ... + \alpha_{i_t}, 1 \le i_1 < ... < i_t \le s$, also is a s-normal family.

Theorem 2.18. Let $\alpha_i : X \to M_{n_i}(\mathbb{C}), i = 1, ..., l$, be irreducible pairwise dissimilar families. Then, for arbitrary matrices $C_1, ..., C_l$ of orders $n_1, ..., n_l$, respectively, there exists a polynomial $h \in \mathbb{C}[X]$ such that

$$(\alpha_1 + \dots + \alpha_l)(h) = C_1 \oplus \dots \oplus C_l.$$

Proposition 2.19. A family α is normal if and only if it is similar to a sum of irreducible families in which similar summands are s-unitarily similar.

Corollary 2.20. A family α is s-normal if and only if it is similar to a sum of irreducible families in which similar summands are s-unitarily similar.

Theorem 2.21. Normal familes $\alpha : X \to M_n(\mathbb{C})$ and $\beta : X \to M_n(\mathbb{C})$ are s-unitarily similar if and only if

$$tr \ \alpha^{\Theta}(v)\alpha(w) = tr \ \beta^{\Theta}(v)\beta(w), \quad \forall v, w \in \langle X \rangle.$$
(2.13)

Before proving the theorem, we make the following observation. Since trace is a linear function, the validity of equalities (2.13) implies that these equalities remain true when the words v and w are replaced by arbitrary polynomials $f, g \in \mathbb{C}[X]$. The function

$$(f,g) = tr \ \alpha^{\Theta}(g)\alpha(f)$$

defines a scalar product on the complex linear space $\mathbb{C}[X]$. Thus, Theorem 2.21 asserts that the matrix families α and β are s-unitarily similar if they define the same scalar product on $\mathbb{C}[X]$.

Proof. The fact that conditions (2.13) are necessary for s-unitary similarity is trivial. Let us prove that these conditions are sufficient. Conditions (2.13)contain conditions (2.7) in the particular case v = e. In view of Theorem 2.9 and the fact, noted above, that normal families are completely reducible, these conditions are ensure that α and β are similar.

To prove that α and β are s-unitarily similar, we first consider the case in which α is an irreducible family. By Burnside's Theorem, there exists words w_1, \dots, w_{n^2} such that the matrices

$$\alpha(w_1), \dots, \alpha(w_{n^2})$$

are linearly independent. Denote by $\alpha'(w_i)$ the column vector of dimension n^2 whose first n components from the first column in $\alpha(w_i)$, the next n components from the second column, and so on. Consider the matrix

$$G = [\alpha'(w_1), ..., \alpha'(w_{n^2})]$$

of order n^2 . It is obvious that G is a nonsingular matrix. By a direct calculation, one can verify that

$$G^{\Theta}n\alpha(w)G = \|tr \ \alpha^{\Theta}(w_i)\alpha(w)\alpha(w_j)\|$$

for an arbitrary word $w \in \langle X \rangle$. Here $n\alpha(w)$ is the direct sum of n copies of $\alpha(w)$. Define

$$H = [\beta'(w_1), ..., \beta'(w_{n^2})].$$

For an arbitrary word $w \in \langle X \rangle$, condition (2.13) imply the equality

$$G^{\Theta}n\alpha(w)G = H^{\Theta}n\beta(w)H.$$
(2.14)

In particular, when w = e, we have $G^{\Theta}G = H^{\Theta}H$. The last equality implies that H is a nonsingular matrix, while $U = GH^{-1}$ is s-unitary. Then it follows from (2.14) that

$$U^{\Theta}n\alpha(w)U = n\beta(w).$$

Thus, the families $n\alpha$ and $n\beta$ are s-unitarily similar moreover, they are normal by construction. According to Proposition 2.14, the family $n\alpha + n\beta$ also is normal. Then the family $\alpha + \beta$ is normal as well. As already said, equality (2.13) ensures that α and β are similar. Again applying Proposition 2.14, this time to the families α and β , we conclude that α is s-unitarily similar to β .

Now, assume that α and β are arbitrary normal families of matrices. By Proposition 2.19, each family can be transformed by a s-unitary similarity into a sum of irreducible families any two of which are either dissimilar or s-unitary similar. Therefore, it suffices to gives a proof for the families

$$\alpha = \alpha_1 + \dots + \alpha_s \qquad and\beta = \beta_1 + \dots + \beta_t, \tag{2.15}$$

which are exactly such sums.

As already noted, equality (2.13) implies the similarity between α and β . The proof of a theorem in [1] concerning the role of the trace of a completely reducible representation shows that this similarity can be described in more exact terms, namely, one necessarily has s = t in expression (2.15), and there exists a permutation σ of the integers $\{1, ..., s\}$ such that α_i is similar to β_{σ_i} . It will be convenient to assume that $\alpha_1, ..., \alpha_l, l \leq s$, is the complete list of pairwise dissimilar summands. This can be achieved by a permutation of diagonal blocks, which is a similarity transformation performed by a permutation matrix, that is s-unitary similarity transformation.

Further, assume that m_i , $1 \le i \le l$, is he number of times that a summand similar to α_i enters the family α . Then equalities (2.13) can be rewritten as

$$\sum_{i=1}^{l} m_i \operatorname{tr} \alpha_i^{\Theta}(v) \alpha_i(w) = \sum_{i=1}^{l} m_i \operatorname{tr} \beta_{\sigma_{(i)}}^{\Theta}(v) \alpha_{\sigma_{(i)}}(w), \quad \forall v, w \in \langle X \rangle.$$
(2.16)

Note that, because of the linearity of the trace, equalities (2.16) remain true if the words v and w are replaced by arbitrary polynomials.

Fix an arbitrary α_k , $1 \leq k \leq l$, and a word $w \in \langle X \rangle$. According to Theorem 2.18, there exists a polynomial $h \in \mathbb{C}[X]$ such that

$$\alpha_k(h) = \alpha_k(w), \tag{2.17}$$

$$\alpha_i(h) = 0 \quad \forall \ i \neq k. \tag{2.18}$$

Let P_k be a matrix that transforms the family α_k into $\beta_{\sigma(k)}$. In particular,

$$P_k^{-1}\alpha_k(h)P_k = \beta_{\sigma(k)}(h), \qquad P_k^{-1}\alpha_k(w)P_k = \beta_{\sigma(k)}(w).$$

In view of (2.17), it follows that

$$\beta_{\sigma(k)}(h) = \beta_{\sigma(k)}(w). \tag{2.19}$$

Taking (2.18) into account, we have

$$\beta_{\sigma(i)}(h) = P_i^{-1} \alpha_i(h) P_i = 0 \quad \forall \ i \neq k.$$

$$(2.20)$$

Replacing w in (2.16) by a polynomial h, taking relations (2.17)–(2.20) into account, and dividing both sides by m_k , we arrive at the equality

$$tr \ \alpha_k^{\Theta}(v)\alpha_k(w) = tr \ \beta_{\sigma(k)}^{\Theta}(v)\beta_{\sigma(k)}(w).$$

Recall that no restrictions were placed on the words v and w. According to the first part of the proof, the irreducible families α_k and $\beta_{\sigma(k)}$ are s-unitarily similar. Let U_k be a s-unitary matrix transforming α_k and $\beta_{\sigma(k)}$, and let F be a permutation matrix such that

$$F^{\Theta}(\beta_1(x) \oplus \ldots \oplus \beta_s(x))F = \beta_{\sigma(1)}(x) \oplus \ldots \oplus \beta_{\sigma(s)}(x) \quad \forall x \in X.$$

It is easy to see that the s-unitary matrix

$$(U_1 \oplus \ldots \oplus U_s)F^{\in}$$

transforms the family α into β .

2.2 Finite Criteria for s-unitary Similarity

Specht's theorem was refined by Pearcy [4, 3], who converted t into a finite criterion by showing that the verification of equality (2.9) can be limited to words of length at most $2n^2$. This proves the existence of a finite complete system of s-unitary invariants. We show that Theorem 2.21 can also be transformed into a finite criterion. Denote by X^k the set composed of words of length at most k and by \bar{k} the number of such words. Define

$$d_k = \dim span\{\alpha(p), \ p \in X^k\}.$$

It is obvious that

 $1 = d_0 \le d_1 \le \dots$

Moreover, if

$$1 = d_0 < d_1 < \dots < d_l = d_{l+1}, \tag{2.21}$$

then

$$d_l = d_{l+1} = \dots \quad and \quad \dim \mathcal{A} = d_l. \tag{2.22}$$

The least number l such that $d_l = d_{l+1}$ will be called the length of the family α .

It will be convenient to assume that the set $\langle X \rangle$ is indexed $(\langle X \rangle = \{p_0, p_1, ...\})$ so that a shorter word has a smaller index than a longer one. In particular, $p_0 = e$. For the system of vectors $\alpha(p_0)$, $\alpha(p_1), ..., \alpha(p_{\bar{k}-1})$, we form the new Gram matrix

$$G_k = \|tr \; \alpha^{\Theta}(p_i)\alpha(p_j)\|.$$

It rank is equal to the maximum number of linearly independent vectors in the system; hence we have

$$rank \ G_k = d_k$$

This equality implies

A Note on s-unitary Similarity of a Complex Matrices

29

Proposition 2.22. The length $\alpha: X \to M_n(\mathbb{C})$ is equal to the least number l with the property that

rank
$$G_l = rank \ G_{l+1}$$
.

Proposition 2.23. The functional tr $\alpha^{\Theta}(v)\alpha(w)$ is defined for arbitrary $v, w \in \langle X \rangle$, if one knows its values on words $v \in X^l$, $w \in X^{l+1}$, where l is the length of the family α .

Proof. Write the matrix G_k as

$$G_k = H_k^{\Theta} H_k, \quad where \quad H_k = [\alpha'(p_0), ..., \alpha'(p_{\bar{k}-1})]$$

Define an auxiliary matrix family $\hat{\alpha} : X \to M_{\bar{l}}(\mathbb{C})$ from the equations

$$n\alpha(x)H_l = H_l\hat{\alpha}(x), \quad x \in X.$$
(2.23)

Since

$$n\alpha(x)H_l = [\alpha'(x), \alpha'(xp_1)...\alpha'(xp_{\bar{l}-1})], \quad x \in X$$

and in view of properties (2.21) and (2.22) of the number l, Equation (2.23) are indeed salvable. The multiplication of (2.23) by H_l^{Θ} yields the system

$$H_l^{\Theta} n\alpha(x)H_l = G_l\hat{\alpha}(x), \quad x \in X.$$
(2.24)

Systems (2.23) and (2.24) are equivalent, because the first system is solvable [?]. Since

$$H_l^{\Theta} n\alpha(x)H_l = \|tr \ \alpha^{\Theta}(p_i)\alpha(xp_j)\|,$$

we can assert that the family $\hat{\alpha}$ is completely determined by the numbers

$$tr \ \alpha^{\Theta}(v)\alpha(w), \quad v \in X^l, \ w \in X^{l+1},$$

where l is the length of α .

It is clear that equalities (2.23) remain true if x is replaced by an arbitrary word w. Multiplying the equalities

$$n\alpha(w)H_l = H_l\hat{\alpha}(w) \quad H_l^{\Theta}n\alpha^{\Theta}(v) = \hat{\alpha}^{\Theta}(v)H_l^{\Theta}$$

we obtain

$$H_l^{\Theta} n \alpha^{\Theta}(v) n \alpha(w) H_l = \hat{\alpha}^{\Theta}(v) H_l^{\Theta} H_l \hat{\alpha}(w),$$

or

$$\|tr \ \alpha^{\Theta}(vp_i)\alpha(wp_j)\| = \hat{\alpha}^{\Theta}(v)G_l\hat{\alpha}(w).$$
(2.25)

Note that the entry (1, 1) of the matrix in (2.25) is equal to $tr \alpha^{\Theta}(v)\alpha(w)$.

Thus, given the matrix G_l and the matrix family $\hat{\alpha}$ are determined by the values indicated in the formulation of Proposition 2.23.

Now, it is easy to prove a finite criterion for the s-unitary similarity between the normal matrix families.

Theorem 2.24. Let $\alpha : X \to M_n \mathbb{C}$ be a normal family of length *l*. It is s-unitarily similar to the families $\beta : X \to M_n \mathbb{C}$ if

$$tr \ \alpha^{\Theta}(v)\alpha(w) = tr \ \beta^{\Theta}(v)\beta(w) \quad \forall v, w \in X^{l+1}.$$
(2.26)

Proof. Equalities (2.26) ensure that α and β have the same new Gram matrix, that is

$$G_k(\alpha) = G_k(\beta)$$
 $k = 1, ..., l, l + 1.$

Hence by Proposition 2.22 the length of the family α and β is equal to l. Now applying Proposition 2.23, we conclude that equalities (2.26) are fulfilled for all $v, w \in \langle X \rangle$. Then, by Theorem 2.21, α and β are s-unitarily similar.

Corollary 2.25. For matrices A and B to be s-unitarily similar, it suffices that

$$tr \ \alpha(w) = tr \ \beta(w) \quad \forall w \in X^{2l+2},$$

where l is the length of the family α .

References

- [1] B.L. Van der Waerden, Algebra, Springer-Verlag, Berlin, (1966).
- [2] W.Specht, Zur Theorie der Matrizen, II, Jahresber. Deutsch. Math. Verein 50(1940), 19–23.
- [3] R.A. Horn and C.R. Johnson, *Matrix Analysis*, Cambridge Univ. Press, (1985).
- [4] C. A. Pearcy, A complete set of unitary invariants for operators generating finite W* algebra of type I, Pacific J. Math., 12(1962), 1405–1416.
- [5] S.Krishnamoorthy and K.Jaikumar, On s-orthogonal Matrices, Global Journal of Computational Science & Mathematics 1(1)(2011), 1–8.

Int. J. Math. And Its App. ONLINE @ http://ijmaa.in